Publication:
Dimer formation of perylene: an ultracold spectroscopic and computational study

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorBirer, Özgür
dc.contributor.kuauthorYurtsever, İsmail Ersin
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemistry
dc.contributor.researchcenterKoç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM)
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteCollege of Science
dc.contributor.yokidN/A
dc.contributor.yokid7129
dc.date.accessioned2024-11-09T23:53:17Z
dc.date.issued2015
dc.description.abstractThe electronic spectra of perylene inside helium nanodroplets recorded by the depletion method are presented. The results show two broad peaks in addition to sharp monomer vibronic transitions due to dimer formation. In order to understand the details of the spectra, first the dimer formation is studied by DFT and SCS-MP2 calculations and then the electronic spectra are calculated at the minima of the potential energy surface (PES). Theoretical calculations show that there are two low-lying energetically degenerate dimer structures; namely a parallel displaced one and a rotated stacked one. PES around these minima is very flat with a number of local minima at higher energies which at the experimental temperatures cannot be populated. Even though thermodynamically these two structures are equally populated, dynamical considerations point out that in helium droplet the parallel displaced geometry is encouraged by the natural alignment of the molecules due to the acquired angular momentum following the pick-up process. The calculated spectrum of the parallel displaced geometry predicts the positions of the dimer transitions within 30 nm of the experimental spectrum. Furthermore, the difference between the two dimer transitions is accurately predicted to be about 25 nm while the experimental difference was about 20 nm. Such a small difference could only be detected due to the ultracold conditions helium nanodroplets provided.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume1097
dc.identifier.doi10.1016/j.molstruc.2015.05.006
dc.identifier.eissn1872-8014
dc.identifier.issn0022-2860
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-84929603213
dc.identifier.urihttp://dx.doi.org/10.1016/j.molstruc.2015.05.006
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14974
dc.identifier.wos358555700005
dc.keywordsUltracold molecules
dc.keywordsPerylene
dc.keywordsDimerization
dc.keywordsDft electronic spectroscopy
dc.keywordsPerturbation-theory
dc.keywordshelium
dc.keywordsClusters
dc.keywordsSpectra
dc.keywordsMolecules
dc.languageEnglish
dc.publisherElsevier
dc.sourceJournal of Molecular Structure
dc.subjectChemistry
dc.subjectPhysical
dc.titleDimer formation of perylene: an ultracold spectroscopic and computational study
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9382-5954
local.contributor.authorid0000-0001-9245-9596
local.contributor.kuauthorBirer, Özgür
local.contributor.kuauthorYurtsever, İsmail Ersin
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files