Publication:
Analysis of interaction attitudes using data-driven hand gesture phrases

dc.contributor.coauthorYang, Zhaojun
dc.contributor.coauthorMetallinou, Angeliki
dc.contributor.coauthorNarayanan, Shrikanth
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid34503
dc.date.accessioned2024-11-09T23:47:18Z
dc.date.issued2014
dc.description.abstractHand gesture is one of the most expressive, natural and common types of body language for conveying attitudes and emotions in human interactions. In this paper, we study the role of hand gesture in expressing attitudes of friendliness or conflict towards the interlocutors during interactions. We first employ an unsupervised clustering method using a parallel HMM structure to extract recurring patterns of hand gesture (hand gesture phrases or primitives). We further investigate the validity of the derived hand gesture phrases by examining the correlation of dyad's hand gesture for different interaction types defined by the attitudes of interlocutors. Finally, we model the interaction attitudes with SVM using the dynamics of the derived hand gesture phrases over an interaction. The classification results are promising, suggesting the expressiveness of the derived hand gesture phrases for conveying attitudes and emotions.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/ICASSP.2014.6853686
dc.identifier.isbn9781-4799-2892-7
dc.identifier.issn1520-6149
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84905224657&doi=10.1109%2fICASSP.2014.6853686&partnerID=40&md5=bf871ce542cd083836b21af202b96b51
dc.identifier.scopus2-s2.0-84905224657
dc.identifier.urihttp://dx.doi.org/10.1109/ICASSP.2014.6853686
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14098
dc.keywordsInteraction attitudes
dc.keywordsHand gesture
dc.keywordsMotion capture
dc.keywordsSegmentation
dc.keywordsClustering
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.sourceICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dc.subjectAcoustics
dc.subjectElectrical electronics engineering
dc.titleAnalysis of interaction attitudes using data-driven hand gesture phrases
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2715-2368
local.contributor.kuauthorErzin, Engin
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files