Publication:
Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces

dc.contributor.coauthorBozüyük, U.
dc.contributor.coauthorAghakhani, A.
dc.contributor.coauthorAlapan, Y.
dc.contributor.coauthorYunusa, M.
dc.contributor.coauthorWrede, P.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T11:22:34Z
dc.date.issued2022
dc.description.abstractBiological microorganisms overcome the Brownian motion at low Reynolds numbers by utilizing symmetry-breaking mechanisms. Inspired by them, various microrobot locomotion methods have been developed at the microscale by breaking the hydrodynamic symmetry. Although the boundary effects have been extensively studied for microswimmers and employed for surface-rolling microrobots, the behavior of microrobots in the proximity of multiple wall-based “confinement” is yet to be elucidated. Here, we study the confinement effect on the motion of surface-rolling microrobots. Our experiments demonstrate that the locomotion efficiency of spherical microrollers drastically decreases in confined spaces due to out-of-plane rotational flows generated during locomotion. Hence, a slender microroller design, generating smaller rotational flows, is shown to outperform spherical microrollers in confined spaces. Our results elucidate the underlying physics of surface rolling-based locomotion in confined spaces and present a design strategy with optimal flow generation for efficient propulsion in such areas, including blood vessels and microchannels.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipWe thank M. Efe Tiryaki and Aniket Pal for discussions. We also thank Anitha Shiva for VSM analysis. This work was funded by the Max Planck Society. Paul Wrede thanks ETH and Max Planck Center for Learning Systems for funding
dc.description.versionPublisher version
dc.description.volume13
dc.formatpdf
dc.identifier.doi10.1038/s41467-022-34023-z
dc.identifier.eissn2041-1723
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR04051
dc.identifier.linkhttps://doi.org/10.1038/s41467-022-34023-z
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85140351557
dc.identifier.urihttps://hdl.handle.net/20.500.14288/25
dc.identifier.wos871124000028
dc.keywordsConfined spaces
dc.keywordsHydrodynamics
dc.keywordsLocomotion
dc.keywordsMotion
dc.keywordsRobotics
dc.languageEnglish
dc.publisherNature Portfolio
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10940
dc.sourceNature Communications
dc.subjectScience and technology
dc.titleReduced rotational flows enable the translation of surface-rolling microrobots in confined spaces
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10940.pdf
Size:
2.43 MB
Format:
Adobe Portable Document Format