Publication:
Machine learning in point-of-care testing: innovations, challenges, and opportunities

dc.contributor.coauthorHan, Gyeo-Re
dc.contributor.coauthorGoncharov, Artem
dc.contributor.coauthorEryilmaz, Merve
dc.contributor.coauthorYe, Shun
dc.contributor.coauthorPalanisamy, Barath
dc.contributor.coauthorGhosh, Rajesh
dc.contributor.coauthorLisi, Fabio
dc.contributor.coauthorRogers, Elliott
dc.contributor.coauthorGuzman, David
dc.contributor.coauthorDi Carlo, Dino
dc.contributor.coauthorGoda, Keisuke
dc.contributor.coauthorMcKendry, Rachel A.
dc.contributor.coauthorÖzcan, Aydoğan
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.kuauthorTaşoğlu, Savaş
dc.contributor.kuauthorYığcı, Defne
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:33:15Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractThe landscape of diagnostic testing is undergoing a significant transformation, driven by the integration of artificial intelligence (AI) and machine learning (ML) into decentralized, rapid, and accessible sensor platforms for point-of-care testing (POCT). The COVID-19 pandemic has accelerated the shift from centralized laboratory testing but also catalyzed the development of next-generation POCT platforms that leverage ML to enhance the accuracy, sensitivity, and overall efficiency of point-of-care sensors. This Perspective explores how ML is being embedded into various POCT modalities, including lateral flow assays, vertical flow assays, nucleic acid amplification tests, and imaging-based sensors, illustrating their impact through different applications. We also discuss several challenges, such as regulatory hurdles, reliability, and privacy concerns, that must be overcome for the widespread adoption of ML-enhanced POCT in clinical settings and provide a comprehensive overview of the current state of ML-driven POCT technologies, highlighting their potential impact in the future of healthcare.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipUS National Science Foundation (NSF) PATHS-UP Engineering Research Center (NSF); National Research Foundation of South Korea (NRF) - Ministry of Education; Medical Research Council; I-sense EPSRC IRC in Early Warning Sensing Systems for Infectious Diseases; I-sense EPSRC IRC in Agile Early Warning Sensing Systems for Infectious Diseases; AMR [EP/R00529X/1]; M-Africa MRC Global Challenge Research Fund; EPSRC Digital Health Hub for AMR [EP/X031276/1]; MEXT Quantum Leap Flagship Program [JPMXS0120330644]; JST ASPIRE Program [JPMJAP2316]; [1648451]; [NRF-2021R1A6A3A14039885]; [MR/W006774/1]; [EP/K031953/1]
dc.description.versionPublished Version
dc.identifier.doi10.1038/s41467-025-58527-6
dc.identifier.eissn2041-1723
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06167
dc.identifier.issue1
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105002824689
dc.identifier.urihttps://doi.org/10.1038/s41467-025-58527-6
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29258
dc.identifier.volume16
dc.identifier.wos001458236100019
dc.keywordsArtificial intelligence
dc.keywordsMachine learning
dc.keywordsPoint-of-care systems
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofNature Communications
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectScience and technology
dc.titleMachine learning in point-of-care testing: innovations, challenges, and opportunities
dc.typeReview
dspace.entity.typePublication
person.familyNameTaşoğlu
person.familyNameYığcı
person.givenNameSavaş
person.givenNameDefne
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files