Publication:
Markov-based failure prediction for human motion analysis

dc.contributor.coauthorImennov, Nikita S.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileN/A
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokid26207
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:14:38Z
dc.date.issued2003
dc.description.abstractThis paper presents a new method of detecting and predicting motion tracking failures with applications in human motion and gait analysis. We define a tracking failure as an event and describe its temporal characteristics using a hidden Markov model (HMM). This stochastic model is trained using previous examples of tracking failures. We derive vector observations for the HMM using the noise covariance matrices characterizing a tracked, 3-D structural model of the human body. We show a causal relationship between the conditional output probability of the HMM, as transformed using a logarithmic mapping function, and impending tracking failures. Results are illustrated on several multi-view sequences of complex human motion.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipIEEE Computer Society (TC-PAMI)
dc.description.volume2
dc.identifier.doi10.1109/iccv.2003.1238638
dc.identifier.issn1550-5499
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-0344552266anddoi=10.1109%2ficcv.2003.1238638andpartnerID=40andmd5=9375dc3ccc024b27e954ae8ec21676e6
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-0344552266
dc.identifier.urihttp://dx.doi.org/10.1109/iccv.2003.1238638
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10170
dc.keywordsMarkov processes
dc.keywordsMathematical models
dc.keywordsMatrix algebra
dc.keywordsMotion estimation
dc.keywordsProbability
dc.keywordsSpurious signal noise
dc.keywordsThree dimensional computer graphics
dc.keywordsVectors
dc.keywordsHidden Markov model
dc.keywordsHuman motion analysis
dc.keywordsLogarithmic mapping function
dc.keywordsImage analysis
dc.languageEnglish
dc.publisherIEEE
dc.sourceProceedings of the IEEE International Conference on Computer Vision
dc.subjectElectrical electronics engineering
dc.titleMarkov-based failure prediction for human motion analysis
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.authoridN/A
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorDockstader, Shiloh L.
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files