Publication: Markov-based failure prediction for human motion analysis
dc.contributor.coauthor | Imennov, Nikita S. | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | N/A | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.kuauthor | Tekalp, Ahmet Murat | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | N/A | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | N/A | |
dc.contributor.yokid | 26207 | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:14:38Z | |
dc.date.issued | 2003 | |
dc.description.abstract | This paper presents a new method of detecting and predicting motion tracking failures with applications in human motion and gait analysis. We define a tracking failure as an event and describe its temporal characteristics using a hidden Markov model (HMM). This stochastic model is trained using previous examples of tracking failures. We derive vector observations for the HMM using the noise covariance matrices characterizing a tracked, 3-D structural model of the human body. We show a causal relationship between the conditional output probability of the HMM, as transformed using a logarithmic mapping function, and impending tracking failures. Results are illustrated on several multi-view sequences of complex human motion. | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | WoS | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsorship | IEEE Computer Society (TC-PAMI) | |
dc.description.volume | 2 | |
dc.identifier.doi | 10.1109/iccv.2003.1238638 | |
dc.identifier.issn | 1550-5499 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-0344552266anddoi=10.1109%2ficcv.2003.1238638andpartnerID=40andmd5=9375dc3ccc024b27e954ae8ec21676e6 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-0344552266 | |
dc.identifier.uri | http://dx.doi.org/10.1109/iccv.2003.1238638 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/10170 | |
dc.keywords | Markov processes | |
dc.keywords | Mathematical models | |
dc.keywords | Matrix algebra | |
dc.keywords | Motion estimation | |
dc.keywords | Probability | |
dc.keywords | Spurious signal noise | |
dc.keywords | Three dimensional computer graphics | |
dc.keywords | Vectors | |
dc.keywords | Hidden Markov model | |
dc.keywords | Human motion analysis | |
dc.keywords | Logarithmic mapping function | |
dc.keywords | Image analysis | |
dc.language | English | |
dc.publisher | IEEE | |
dc.source | Proceedings of the IEEE International Conference on Computer Vision | |
dc.subject | Electrical electronics engineering | |
dc.title | Markov-based failure prediction for human motion analysis | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0003-1465-8121 | |
local.contributor.authorid | N/A | |
local.contributor.kuauthor | Tekalp, Ahmet Murat | |
local.contributor.kuauthor | Dockstader, Shiloh L. | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 |