Publication:
Bioinspired underwater locomotion of light-driven liquid crystal gels

dc.contributor.coauthorShahsavan, Hamed
dc.contributor.coauthorAghakhani, Amirreza
dc.contributor.coauthorZeng, Hao
dc.contributor.coauthorGuo, Yubing
dc.contributor.coauthorDavidson, Zoey S.
dc.contributor.coauthorPriimagi, Arri
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T11:42:38Z
dc.date.issued2020
dc.description.abstractSoft-bodied aquatic invertebrates, such as sea slugs and snails, are capable of diverse locomotion modes under water. Recapitulation of such multimodal aquatic locomotion in small-scale soft robots is challenging, due to difficulties in precise spatiotemporal control of deformations and inefficient underwater actuation of existing stimuli-responsive materials. Solving this challenge and devising efficient untethered manipulation of soft stimuli-responsive materials in the aquatic environment would significantly broaden their application potential in biomedical devices. We mimic locomotion modes common to sea invertebrates using monolithic liquid crystal gels (LCGs) with inherent light responsiveness and molecular anisotropy. We elicit diverse underwater locomotion modes, such as crawling, walking, jumping, and swimming, by local deformations induced by selective spatiotemporal light illumination. Our results underpin the pivotal role of the physicomechanical properties of LCGs in the realization of diverse modes of light-driven robotic underwater locomotion. We envisage that our results will introduce a toolbox for designing efficient untethered soft robots for fluidic environments.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue10
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipEuropean Research Council (ERC), Project Phototune
dc.description.sponsorshipAcademy of Finland postdoctoral
dc.description.sponsorshipAcademy of Finland Flagship Programme (Photonics Research and Innovation)
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipMax Planck Society
dc.description.versionAuthor's final manuscript
dc.description.volume117
dc.identifier.doi10.1073/pnas.1917952117
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02353
dc.identifier.issn0027-8424
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85081897274
dc.identifier.urihttps://hdl.handle.net/20.500.14288/231
dc.identifier.wos519530400013
dc.keywordsBiomimetics
dc.keywordsLiquid crystal gels
dc.keywordsAzobenzene
dc.keywordsSoft robotics
dc.keywordsUnderwater Locomotion
dc.language.isoeng
dc.publisherNational Academy of Sciences
dc.relation.grantno679646
dc.relation.grantno316416
dc.relation.grantno326445
dc.relation.grantno320165
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of America
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8989
dc.subjectMultidisciplinary sciences
dc.titleBioinspired underwater locomotion of light-driven liquid crystal gels
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8989.pdf
Size:
885.73 KB
Format:
Adobe Portable Document Format