Publication:
FractalRG: advanced fractal region growing using Gaussian mixture models for left atrium segmentation

dc.contributor.coauthorFirouznia, Marjan
dc.contributor.coauthorKoupaei, Javad Alikhani
dc.contributor.coauthorFaez, Karim
dc.contributor.coauthorJabdaragh, Aziza Saber
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorDemir, Çiğdem Gündüz
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.researchcenterKoç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:37:07Z
dc.date.issued2024
dc.description.abstractThis paper presents an advanced region growing method for precise left atrium (LA) segmentation and estimation of atrial wall thickness in CT/MRI scans. The method leverages a Gaussian mixture model (GMM) and fractal dimension (FD) analysis in a three -step procedure to enhance segmentation accuracy. The first step employs GMM for seed initialization based on the probability distribution of image intensities. The second step utilizes fractal -based texture analysis to capture image self -similarity and texture complexity. An enhanced approach for generating 3D fractal maps is proposed, providing valuable texture information for region growing. In the last step, fractal -guided 3D region growing is applied for segmentation. This process expands seed points iteratively by adding neighboring voxels meeting specific similarity criteria. GMM estimations and fractal maps are used to restrict the region growing process, reducing the search space for global segmentation and enhancing computational efficiency. Experiments on a dataset of 10 CT scans with 3,947 images resulted in a Dice score of 0.85, demonstrating superiority over traditional techniques. In a dataset of 30 MRI scans with 3,600 images, the proposed method achieved a competitive Dice score of 0.89 +/- 0.02, comparable to Deep Learning -based models. These results highlight the effectiveness of our approach in accurately delineating the LA region across diverse imaging modalities.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsThis work was supported by the Scientific and Technological Research Council of Turkey, project no: TUB & Iacute;TAK 220N354 and International Academic Cooperation Directorate University of Tabriz and Ministry of Science, Research and Technology of Iran, project no: rRTU-2-1402, 1400-05-01.
dc.description.volume147
dc.identifier.doi10.1016/j.dsp.2024.104411
dc.identifier.eissn1095-4333
dc.identifier.issn1051-2004
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85185519915
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2024.104411
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22270
dc.identifier.wos1187798500001
dc.keywordsFractal dimension
dc.keywordsRegion-growing
dc.keywordsGaussian mixture model
dc.keywords3D segmentation
dc.keywordsComputed tomography
dc.keywordsMagnetic resonance imaging
dc.languageen
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.grantnoScientific and Technological Research Council of Turkey
dc.relation.grantnoInternational Academic Cooperation Directorate University of Tabriz
dc.relation.grantnoMinistry of Science, Research and Technology of Iran [1400-05-01, TUBTAK 220N354]
dc.relation.grantno[rRTU-2-1402]
dc.sourceDigital Signal Processing
dc.subjectElectrical engineering
dc.subjectElectronic engineering
dc.titleFractalRG: advanced fractal region growing using Gaussian mixture models for left atrium segmentation
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorDemir, Çiğdem Gündüz
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files