Publication:
O1O: Grouping of known classes to identify unknown objects as odd-one-out

dc.conference.date8 December 2024 through 12 December 2024
dc.conference.locationHanoi
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.kuauthorFaculty Member, Güney, Fatma
dc.contributor.kuauthorMaster Student, Yavuz, Mısra
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:33:40Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractObject detection methods trained on a fixed set of known classes struggle to detect objects of unknown classes in the open-world setting. Current fixes involve adding approximate supervision with pseudo-labels corresponding to candidate locations of objects, typically obtained in a class-agnostic manner. While previous approaches mainly rely on the appearance of objects, we find that geometric cues improve unknown recall. Although additional supervision from pseudo-labels helps to detect unknown objects, it also introduces confusion for known classes. We observed a notable decline in the model’s performance for detecting known objects in the presence of noisy pseudo-labels. Drawing inspiration from studies on human cognition, we propose to group known classes into superclasses. By identifying similarities between classes within a superclass, we can identify unknown classes through an odd-one-out scoring mechanism. Our experiments on open-world detection benchmarks demonstrate significant improvements in unknown recall, consistently across all tasks. Crucially, we achieve this without compromising known performance, thanks to better partitioning of the feature space with superclasses. Project page: https://kuis-ai.github.io/O1O. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipKUIS; European Commission, EC; Royal Society Newton Fund, (2202237); European Research Council, ERC, (101116486); European Research Council, ERC
dc.identifier.doi10.1007/978-981-96-0972-7_23
dc.identifier.embargoNo
dc.identifier.endpage410
dc.identifier.isbn9789819609710
dc.identifier.issn0302-9743
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85213325341
dc.identifier.startpage394
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29296
dc.identifier.urihttps://doi.org/10.1007/978-981-96-0972-7_23
dc.identifier.volume15481 LNCS
dc.keywordsGeometric proposals
dc.keywordsGrouping of classes
dc.keywordsOpen-world object detection
dc.language.isoeng
dc.publisherSpringer
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofLecture notes in computer science
dc.relation.ispartof17th Asian Conference on Computer Vision, ACCV 2024
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.titleO1O: Grouping of known classes to identify unknown objects as odd-one-out
dc.typeConference Proceeding
dspace.entity.typePublication
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files