Publication: Transient analysis of convexly constrained mixture methods
dc.contributor.coauthor | N/A | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.kuauthor | Kozat, Süleyman Serdar | |
dc.contributor.kuauthor | Dönmez, Mehmet Ali | |
dc.contributor.kuauthor | Özkan, Hüseyin | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.yokid | 177972 | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-10T00:04:36Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We study the transient performances of three convexly constrained adaptive combination methods that combine outputs of two adaptive filters running in parallel to model a desired unknown system. We propose a theoretical model for the mean and mean-square convergence behaviors of each algorithm. Specifically, we provide expressions for the time evolution of the mean and the variance of the combination parameters, as well as for the mean square errors. The accuracy of the theoretical models are illustrated through simulations in the case of a mixture of two LMS filters with different step sizes. | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | WoS | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsorship | IEEE Signal Processing Society | |
dc.description.sponsorship | IBM Faculty Award and Outstanding Young Scientist Award Program, Turkish Academy of Sciences. | |
dc.identifier.doi | 10.1109/MLSP.2012.6349801 | |
dc.identifier.isbn | 9781-4673-1026-0 | |
dc.identifier.issn | 2161-0363 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870670947anddoi=10.1109%2fMLSP.2012.6349801andpartnerID=40andmd5=cf0ce3828061593fc7ca5dedc96e8357 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-84870670947 | |
dc.identifier.uri | http://dx.doi.org/10.1109/MLSP.2012.6349801 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/16294 | |
dc.identifier.wos | 311966000092 | |
dc.keywords | Convergence behaviors | |
dc.keywords | Convex combinations | |
dc.keywords | Mean-square | |
dc.keywords | Mixture method | |
dc.keywords | Running-in | |
dc.keywords | Step size | |
dc.keywords | Theoretical models | |
dc.keywords | Time evolutions | |
dc.keywords | Transient performance | |
dc.keywords | Adaptive filtering | |
dc.keywords | Adaptive filters | |
dc.keywords | Computer simulation | |
dc.keywords | Learning systems | |
dc.keywords | Mean square error | |
dc.keywords | Signal processing | |
dc.keywords | Mixtures | |
dc.language | English | |
dc.publisher | IEEE | |
dc.source | IEEE International Workshop on Machine Learning for Signal Processing, MLSP | |
dc.subject | Engineering | |
dc.subject | Electrical and electronics engineering | |
dc.title | Transient analysis of convexly constrained mixture methods | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-6488-3848 | |
local.contributor.authorid | N/A | |
local.contributor.authorid | 0000-0002-5539-9085 | |
local.contributor.kuauthor | Kozat, Süleyman Serdar | |
local.contributor.kuauthor | Dönmez, Mehmet Ali | |
local.contributor.kuauthor | Özkan, Hüseyin | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 |