Publication:
Transcranial magnetic stimulation induced early silent period and rebound activity reexamined

Thumbnail Image

School / College / Institute

Organizational Unit
GRADUATE SCHOOL OF HEALTH SCIENCES
Upper Org Unit
Organizational Unit
Organizational Unit
SCHOOL OF MEDICINE
Upper Org Unit

Program

KU Authors

Co-Authors

Haavik, Heidi
Nedergaard, Rasmus Wiberg
Şenocak, Beatrice Selen
Göztepe, Mehmet Berke
Niazi, İmran Khan

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Despite being widely studied, the underlying mechanisms of transcranial magnetic brain stimulation (TMS) induced motor evoked potential (MEP), early cortical silent period (CSP) and rebound activity are not fully understood. Our aim is to better characterize these phenomena by combining various analysis tools on firing motor units. Responses of 29 tibialis anterior (TA) and 8 abductor pollicis brevis (APB) motor units to TMS pulses were studied using discharge rate and probability-based tools to illustrate the profile of the synaptic potentials as they develop on motoneurons in 24 healthy volunteers. According to probability-based methods, TMS pulse produces a short-latency MEP which is immediately followed by CSP that terminates at rebound activity. Discharge rate analysis, however, revealed not three, but just two events with distinct time courses; a long-lasting excitatory period (71.2 ± 9.0 ms for TA and 42.1 ± 11.2 ms for APB) and a long-latency inhibitory period with duration of 57.9 ± 9.5 ms for TA and 67.3 ± 13.8 ms for APB. We propose that part of the CSP may relate to the falling phase of net excitatory postsynaptic potential induced by TMS. Rebound activity, on the other hand, may represent tendon organ inhibition induced by MEP activated soleus contraction and/or long-latency intracortical inhibition. Due to generation of field potentials when high intensity TMS is used, this study is limited to investigate the events evoked by low intensity TMS only and does not provide information about later parts of much longer CSPs induced by high intensity TMS. Adding discharge rate analysis contributes to obtain a more accurate picture about the characteristics of TMS-induced events. These results have implications for interpreting motor responses following TMS for diagnosis and overseeing recovery from various neurological conditions.

Source

Publisher

Public Library of Science

Subject

Medicine, Physiology

Citation

Has Part

Source

PLOS One

Book Series Title

Edition

DOI

10.1371/journal.pone.0225535

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

7

Downloads

View PlumX Details