Publication:
A stochastic framework for rate-distortion optimized video coding over error-prone networks

dc.contributor.coauthorHarmanci, Oztan
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid26207
dc.date.accessioned2024-11-09T23:03:06Z
dc.date.issued2007
dc.description.abstractThis paper proposes a complete stochastic framework for RD optimal encoder design for video over error-prone networks, which applies to any motion-compensated predictive video codec. The distortion measure has been taken as the mean square error over an ensemble of channels given an estimate of the instantaneous packet loss probability. We show that 1) the optimal motion compensated prediction, in the MSE sense, requires computation of the expected value of the reference frames, and 2) calculation of the MSE (distortion measure) requires computation of the second moment of the reference frames. We propose a recursive procedure for the computation of both the expected value and second moment of the reference frames, which are together called the stochastic frame buffer. Furthermore, we propose a stochastic RD optimization method for selection of the optimal macroblock mode and motion vectors given the instantaneous packet loss probability. If available, channel feedback can also be incorporated into the proposed stochastic framework. However, the proposed framework does not require a feedback channel to exist, and when it exists, it does not have to be lossless. In the absence of any packet losses, the proposed stochastic framework reduces to the well-known deterministic RD optimization procedures. One possible application of the optimal stochastic framework would be for multicast streaming to an ensemble of receivers. Experimental results indicate that the proposed framework outperforms other available error tracking and control schemes.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue3
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume16
dc.identifier.doi10.1109/TIP.2006.891047
dc.identifier.eissn1941-0042
dc.identifier.issn1057-7149
dc.identifier.scopus2-s2.0-33947233264
dc.identifier.urihttp://dx.doi.org/10.1109/TIP.2006.891047
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8410
dc.identifier.wos244311100009
dc.keywordsError analysis
dc.keywordsError resilience
dc.keywordsMean-square
dc.keywordsError (MSE) methods
dc.keywordsRate distortion (RD) theory
dc.keywordsStochastic frame buffers
dc.keywordsVideo coding transmission
dc.languageEnglish
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.sourceIEEE Transactions on Image Processing
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectElectrical electronics engineering
dc.titleA stochastic framework for rate-distortion optimized video coding over error-prone networks
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files