Publication:
Abalone life phase classification with deep learning

dc.contributor.coauthorOzsarfati, Eran
dc.contributor.coauthorYılmaz, Alper
dc.contributor.departmentN/A
dc.contributor.departmentN/A
dc.contributor.kuauthorŞahin, Egemen
dc.contributor.kuauthorSaul, Can Jozef
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileResearcher
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.schoolcollegeinstituteN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-10T00:00:59Z
dc.date.issued2018
dc.description.abstractIn this paper, we present algorithmic and architectural comparison of deep learning models for predicting abalone age range. While abalone age can be determined through very detailed steps in a laboratory, we present an efficient method for determining its age through machine learning models. We present a precise and an efficient method for converting data to a computable version through binary encoding and normalization. We experiment with various topological variances in neural network architectures, convolutional approach to the task at hand and recently succeeding residual neural network architecture for finding the optimal prediction accuracy and efficiency. Although the conventional machine learning methods showed success in this field, our deep learning model tests yield an accuracy of 79.09% accuracy, surpassing the conventional machine learning algorithms as we incorporated methods for preventing over-fitting and methods for normalizing the output throughout the network.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doiN/A
dc.identifier.eissn2640-0146
dc.identifier.isbn978-1-7281-1301-2
dc.identifier.issn2640-0154
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85065731454
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15881
dc.identifier.wos470762100029
dc.keywordsMachine learning
dc.keywordsDeep Learning
dc.keywordsAbalone
dc.keywordsConvolutional neural network
dc.languageEnglish
dc.publisherIEEE
dc.source2018 5th International Conference on Soft Computing & Machine Intelligence (Iscmi)
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.titleAbalone life phase classification with deep learning
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorŞahin, Egemen
local.contributor.kuauthorSaul, Can Jozef

Files