Publication:
Quadratic primes and discrepancy in short aritmetic progressions

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorAlkan, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2025-09-10T04:55:26Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractIt is shown that the asymptotic size of the mean discrepancy function for primes in arithmetic progressions with unusually large square common difference furnishes a necessary and sufficient condition for the infinitude of quadratic primes. In particular, the size of the mean discrepancy over very short progressions of primes with square difference is strong enough to dictate the number of primes of the form 4n2 + 1 as predicted by the Bateman-Horn conjecture. Conversely, assuming the Bateman-Horn conjecture, we show how the mean discrepancy function behaves as expected by exhibiting a strong asymptotic negative tendency. By estimating the mean discrepancy from above with the help of Selberg's upper bound sieve, and keeping track of the actual values of the involved constants together with a fair amount of optimization, we are able to confirm this negative tendency unconditionally over certain ranges of the parameters, thereby forming evidence supporting the truth of the Bateman-Horn conjecture. Our confirmed upper bounds reveal that in a sense one comes within a hair's breadth away from settling the infinitude of quadratic primes. Moreover, by developing a uniform version of Selberg's sieve based on a symmetric Mertens type inequality, we extend the mean discrepancy estimates to slightly longer progressions using delicate analytic properties of the arithmetic of imaginary quadratic fields. Lastly, we obtain a Brun-Titchmarsh type inequality holding uniformly for most of the reduced residue classes of primes belonging to a progression having a very large square common difference with the help of an asymptotic formula on the average value of Chebyshev's psi-function over such moduli.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume62
dc.identifier.doi10.4134/JKMS.j240291
dc.identifier.eissn2234-3008
dc.identifier.embargoNo
dc.identifier.endpage1001
dc.identifier.issn0304-9914
dc.identifier.issue4
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-105009823237
dc.identifier.startpage933
dc.identifier.urihttps://doi.org/10.4134/JKMS.j240291
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30074
dc.identifier.wos001532324300009
dc.keywordsQuadratic primes
dc.keywordsMean discrepancy over arithmetic progres-sions
dc.keywordsHardy-Littlewood conjecture
dc.keywordsBateman-Horn conjecture
dc.keywordsSelb erg's upper bound sieve
dc.keywordsBrun-Titchmarsh type inequality
dc.language.isoeng
dc.publisherKorean Mathematical Society
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofJournal of the Korean Mathematical Society
dc.subjectMathematics
dc.titleQuadratic primes and discrepancy in short aritmetic progressions
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameAlkan
person.givenNameEmre
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files