Publication:
Activation of the pleiotropic drug resistance pathway can promote mitochondrial DNA retention by fusion-defective mitochondria in saccharomyces cerevisiae

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorDunn, Cory David
dc.contributor.kuauthorMutlu, Nebibe
dc.contributor.kuauthorGaripler, Görkem
dc.contributor.kuauthorAkdoğan, Emel
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T13:45:17Z
dc.date.issued2014
dc.description.abstractGenetic and microscopic approaches using Saccharomyces cerevisiae have identified many proteins that play a role in mitochondrial dynamics, but it is possible that other proteins and pathways that play a role in mitochondrial division and fusion remain to be discovered. Mutants lacking mitochondrial fusion are characterized by rapid loss of mitochondrial DNA. We took advantage of a petite-negative mutant that is unable to survive mitochondrial DNA loss to select for mutations that allow cells with fusion-deficient mitochondria to maintain the mitochondrial genome on fermentable medium. Nextgeneration sequencing revealed that all identified suppressor mutations not associated with known mitochondrial division components were localized to PDR1 or PDR3, which encode transcription factors promoting drug resistance. Further studies revealed that at least one, if not all, of these suppressor mutations dominantly increases resistance to known substrates of the pleiotropic drug resistance pathway. Interestingly, hyperactivation of this pathway did not significantly affect mitochondrial shape, suggesting that mitochondrial division was not greatly affected. Our results reveal an intriguing genetic connection between pleiotropic drug resistance and mitochondrial dynamics.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue7
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipEuropean Molecular Biology Organization
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipKoc University's College of Sciences
dc.description.versionPublisher version
dc.description.volume4
dc.formatpdf
dc.identifier.doi10.1534/g3.114.010330
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00181
dc.identifier.issn2160-1836
dc.identifier.linkhttps://doi.org/10.1534/g3.114.010330
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-84904536188
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3601
dc.identifier.wos339326600007
dc.keywordsBulk segregant analysis
dc.keywordsDrug resistance
dc.keywordsMitochondrial genome
dc.keywordsMitochondrial shape
dc.keywordsPetite-negative
dc.languageEnglish
dc.publisherGenetics Society America (GSA)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1209
dc.sourceG3
dc.subjectGenetics
dc.subjectHeredity
dc.titleActivation of the pleiotropic drug resistance pathway can promote mitochondrial DNA retention by fusion-defective mitochondria in saccharomyces cerevisiae
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorDunn, Cory David
local.contributor.kuauthorMutlu, Nebibe
local.contributor.kuauthorGaripler, Görkem
local.contributor.kuauthorAkdoğan, Emel
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1209.pdf
Size:
3.94 MB
Format:
Adobe Portable Document Format