Publication: Genome-wide chromatin state transitions associated with developmental and environmental cues
Program
KU-Authors
KU Authors
Co-Authors
Zhu, Jiang
Adli, Mazhar
Zou, James Y.
Verstappen, Griet
Coyne, Michael
Zhang, Xiaolan
Durham, Timothy
Miri, Mohammad
Deshpande, Vikram
De Jager, Philip L.
Advisor
Publication Date
2013
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming.
Description
Source:
CELL
Publisher:
CELL PRESS
Keywords:
Subject
Biochemistry, Molecular Biology, Cell Biology