Publication:
Parsing with context embeddings

dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYüret, Deniz
dc.contributor.kuauthorÖnder, Berkay Furkan
dc.contributor.kuauthorKırnap, Ömer
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid179996
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:15:46Z
dc.date.issued2017
dc.description.abstractWe introduce context embeddings, dense vectors derived from a language model that represent the left/right context of a word instance, and demonstrate that context embeddings significantly improve the accuracy of our transition based parser. Our model consists of a bidirectional LSTM (BiLSTM) based language model that is pre-trained to predict words in plain text, and a multi-layer perceptron (MLP) decision model that uses features from the language model to predict the correct actions for an ArcHybrid transition based parser. We participated in the CoNLL 2017 UD Shared Task as the “Koç University” team and our system was ranked 7th out of 33 systems that parsed 81 treebanks in 49 languages.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.doi10.18653/v1/K17-3008
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01949
dc.identifier.isbn9781945626708
dc.identifier.linkhttps://doi.org/10.18653/v1/K17-3008
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85072885753
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1356
dc.keywordsEmbeddings
dc.keywordsLong short-term memory
dc.keywordsNatural language processing systems
dc.keywordsDecision modeling
dc.keywordsLanguage model
dc.keywordsMulti layer perceptron
dc.keywordsPlain text
dc.keywordsTreebanks
dc.keywordsComputational linguistics
dc.languageEnglish
dc.publisherAssociation for Computational Linguistics (ACL)
dc.relation.grantno114E628 and 215E201
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8498
dc.sourceProceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
dc.subjectComputer engineering
dc.titleParsing with context embeddings
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7039-0046
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorYüret, Deniz
local.contributor.kuauthorÖnder, Berkay Furkan
local.contributor.kuauthorKırnap, Ömer
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8498.pdf
Size:
198.51 KB
Format:
Adobe Portable Document Format