Publication:
Wirelessly actuated thermo and magneto responsive soft bimorph materials with programmable shape-morphing

dc.contributor.coauthorZhang, Jiachen
dc.contributor.coauthorGuo, Yubing
dc.contributor.coauthorHu, Wenqi
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T12:28:41Z
dc.date.issued2021
dc.description.abstractSoft materials that respond to wireless external stimuli are referred to as ""smart"" materials due to their promising potential in real-world actuation and sensing applications in robotics, microfluidics, and bioengineering. Recent years have witnessed a burst of these stimuli-responsive materials and their preliminary applications. However, their further advancement demands more versatility, configurability, and adaptability to deliver their promised benefits. Here, a dual-stimuli-responsive soft bimorph material with three configurations that enable complex programmable 3D shape-morphing is presented. The material consists of liquid crystal elastomers (LCEs) and magnetic-responsive elastomers (MREs) via facile fabrication that orthogonally integrates their respective stimuli-responsiveness without detrimentally altering their properties. The material offers an unprecedented wide design space and abundant degree-of-freedoms (DoFs) due to the LCE's programmable director field, the MRE's programmable magnetization profile, and diverse geometric configurations. It responds to wireless stimuli of the controlled magnetic field and environmental temperature. Its dual-responsiveness allows the independent control of different DoFs for complex shape-morphing behaviors with anisotropic material properties. A diverse set of in situ reconfigurable shape-morphing and an environment-aware untethered miniature 12-legged robot capable of locomotion and self-gripping are demonstrated. Such material can provide solutions for the development of future soft robotic and other functional devices.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue30
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU) Horizon 2020
dc.description.sponsorshipEuropean Research Council (ERC) Advanced Grant SoMMoR Project
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.versionPublisher version
dc.description.volume33
dc.formatpdf
dc.identifier.doi10.1002/adma.202100336
dc.identifier.eissn1521-4095
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02951
dc.identifier.issn0935-9648
dc.identifier.linkhttps://doi.org/10.1002/adma.202100336
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85106666277
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1821
dc.identifier.wos655685600001
dc.keywordsActive soft materials
dc.keywordsLiquid crystal elastomers
dc.keywordsMagnetic
dc.keywordsResponsive elastomers
dc.keywordsProgrammable shape
dc.keywordsMorphing
dc.keywordsSoft robotics
dc.languageEnglish
dc.publisherWiley
dc.relation.grantno834531
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9598
dc.sourceAdvanced Materials
dc.subjectChemistry
dc.subjectScience and technology
dc.subjectMaterials science
dc.subjectPhysics
dc.titleWirelessly actuated thermo and magneto responsive soft bimorph materials with programmable shape-morphing
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9598.pdf
Size:
2.18 MB
Format:
Adobe Portable Document Format