Publication: The jacobian and the ginzburg-landau energy
dc.contributor.coauthor | Jerrard, Robert L. | |
dc.contributor.department | Department of Mathematics | |
dc.contributor.kuauthor | Soner, Halil Mete | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Mathematics | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-09T23:29:38Z | |
dc.date.issued | 2002 | |
dc.description.abstract | We study the Ginzburg-Landau functional Iε(u):= 1/ln(1/ε) ∫U 1/2|∇u|2 + 1/4∈2 (1- |u|2)2 dx, for u ∈ H1 (U; ℝ2), where U is a bounded, open subset of R2. We show that if a sequence of functions uε satisfies sup Iε(uε) andlt; ∞, then their Jacobians Juε are precompact in the dual of Cc0,α for every α ∈ (0, 1]. Moreover, any limiting measure is a sum of point masses. We also characterize the Γ-limit I(·) of the functionals Iε (·), in terms of the function space B2V introduced by the authors in [16, 17]: we show that I(u) is finite if and only if u ∈ B2V(U; S1), and for u ∈ B2V(U; S1), I(u) is equal to the total variation of the Jacobian measure Ju. When the domain U has dimension greater than two, we prove if Iε (uε) ≤ C then the Jacobians Juε are again precompact in (Cc0,α)* for all α ∈ (0, 1], and moreover we show that any limiting measure must be integer multiplicity rectifiable. We also show that the total variation of the Jacobian measure is a lower bound for the Γ limit of the Ginzburg-Landau functional. | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | WoS | |
dc.description.issue | 2 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.volume | 14 | |
dc.identifier.doi | 10.1007/s005260100093 | |
dc.identifier.issn | 0944-2669 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036524698anddoi=10.1007%2fs005260100093andpartnerID=40andmd5=0e27a55f0ce6114aae9bef08107470d2 | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-0036524698 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s005260100093 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/12079 | |
dc.keywords | N/A | |
dc.language | English | |
dc.publisher | Springer Nature | |
dc.source | Calculus of Variations and Partial Differential Equations | |
dc.subject | Mathematics | |
dc.title | The jacobian and the ginzburg-landau energy | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-0824-1808 | |
local.contributor.kuauthor | Soner, Halil Mete | |
relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe |