Publication:
The jacobian and the ginzburg-landau energy

dc.contributor.coauthorJerrard, Robert L.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorSoner, Halil Mete
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:29:38Z
dc.date.issued2002
dc.description.abstractWe study the Ginzburg-Landau functional Iε(u):= 1/ln(1/ε) ∫U 1/2|∇u|2 + 1/4∈2 (1- |u|2)2 dx, for u ∈ H1 (U; ℝ2), where U is a bounded, open subset of R2. We show that if a sequence of functions uε satisfies sup Iε(uε) andlt; ∞, then their Jacobians Juε are precompact in the dual of Cc0,α for every α ∈ (0, 1]. Moreover, any limiting measure is a sum of point masses. We also characterize the Γ-limit I(·) of the functionals Iε (·), in terms of the function space B2V introduced by the authors in [16, 17]: we show that I(u) is finite if and only if u ∈ B2V(U; S1), and for u ∈ B2V(U; S1), I(u) is equal to the total variation of the Jacobian measure Ju. When the domain U has dimension greater than two, we prove if Iε (uε) ≤ C then the Jacobians Juε are again precompact in (Cc0,α)* for all α ∈ (0, 1], and moreover we show that any limiting measure must be integer multiplicity rectifiable. We also show that the total variation of the Jacobian measure is a lower bound for the Γ limit of the Ginzburg-Landau functional.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume14
dc.identifier.doi10.1007/s005260100093
dc.identifier.issn0944-2669
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-0036524698anddoi=10.1007%2fs005260100093andpartnerID=40andmd5=0e27a55f0ce6114aae9bef08107470d2
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-0036524698
dc.identifier.urihttp://dx.doi.org/10.1007/s005260100093
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12079
dc.keywordsN/A
dc.languageEnglish
dc.publisherSpringer Nature
dc.sourceCalculus of Variations and Partial Differential Equations
dc.subjectMathematics
dc.titleThe jacobian and the ginzburg-landau energy
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-0824-1808
local.contributor.kuauthorSoner, Halil Mete
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files