Publication: Atomically detailed models for transport of gas mixtures in ZIF membranes and ZIF/polymer composite membranes
Program
KU-Authors
KU Authors
Co-Authors
Publication Date
Language
Type
Embargo Status
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
In this work, we introduced atomic models for transport of single component gases (CH4, CO2, H-2, and N-2) and binary gas mixtures (H-2/CO2, H-2/N-2, H-2/CH4) in zeolite imidazolate framework (ZIF) membranes and ZIF/polymer composite membranes. the predictions of atomic models were validated by comparing with the available experimental data for a ZIF-90 membrane. Motivated from the good agreement between experimental measurements and predictions of our molecular simulations for single gas and mixture permeances, we extended atomic modeling methods to an unfabricated ZIF membrane, ZIF-65, for predicting its separation performance. Various selectivities of ZIF membranes such as ideal selectivity, mixture selectivity, Adsorption selectivity, and diffusion selectivity were computed for a wide range of operating conditions to assess the potential of ZIF membranes in H-2/CO2 separations. We then combined atomic simulations with continuum modeling to estimate the performance of ZIF-90/Matrimid and ZIF-90/Ultem composite membranes for gas separations. Our theoretical predictions agreed very well with the experimental measurements for these two composite membranes, and therefore, we assessed the performances of several ZIF/polymer membranes composed of various polymers, ZIF-90 and ZIF-65, for separation of H-2 from CO2.
Source
Publisher
amer Chemical Soc
Subject
Engineering, Chemical engineering
Citation
Has Part
Source
industrial and Engineering Chemistry Research
Book Series Title
Edition
DOI
10.1021/ie202530f