Publication:
Magnetic resonance imaging-compatible optically powered miniature wireless modular Lorentz force actuators

dc.contributor.coauthorMutlu, Şenol
dc.contributor.coauthorYaşa, Öncay
dc.contributor.coauthorErin, Önder
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.date.accessioned2024-11-09T11:48:14Z
dc.date.issued2020
dc.description.abstractMinimally invasive medical procedures under magnetic resonance imaging (MRI) guidance have significant clinical promise. However, this potential has not been fully realized yet due to challenges regarding MRI compatibility and miniaturization of active and precise positioning systems inside MRI scanners, i.e., restrictions on ferromagnetic materials and long conductive cables and limited space around the patient for additional instrumentation. Lorentz force-based electromagnetic actuators can overcome these challenges with the help of very high, axial, and uniform magnetic fields (3-7 Tesla) of the scanners. Here, a miniature, MRI-compatible, and optically powered wireless Lorentz force actuator module consisting of a solar cell and a coil with a small volume of 2.5 x 2.5 x 3.0 mm(3) is proposed. Many of such actuator modules can be used to create various wireless active structures for future interventional MRI applications, such as positioning needles, markers, or other medical tools on the skin of a patient. As proof-of-concept prototypes toward such applications, a single actuator module that bends a flexible beam, four modules that rotate around an axis, and six modules that roll as a sphere are demonstrated inside a 7 Tesla preclinical MRI scanner.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume8
dc.formatpdf
dc.identifier.doi10.1002/advs.202002948
dc.identifier.eissn2198-3844
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02581
dc.identifier.linkhttps://doi.org/10.1002/advs.202002948
dc.identifier.quartileQ1
dc.identifier.urihttps://hdl.handle.net/20.500.14288/601
dc.identifier.wos596069500001
dc.keywordsLorentz force actuator
dc.keywordsMagnetic resonance imaging
dc.keywordsMRI compatible
dc.keywordsOptical actuation
dc.keywordsWireless actuation
dc.languageEnglish
dc.publisherWiley
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9224
dc.sourceAdvanced Science
dc.subjectChemistry
dc.subjectNanoscience and nanotechnology
dc.subjectMaterials science
dc.titleMagnetic resonance imaging-compatible optically powered miniature wireless modular Lorentz force actuators
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9224.pdf
Size:
3.99 MB
Format:
Adobe Portable Document Format