Publication:
Deep learning-based land use land cover segmentation of historical aerial images

dc.contributor.coauthorSertel, Elif
dc.contributor.departmentDepartment of History
dc.contributor.kuauthorAvcı, Cengiz
dc.contributor.kuauthorKabadayı, Mustafa Erdem
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.date.accessioned2025-01-19T10:28:31Z
dc.date.issued2023
dc.description.abstractThis study aims to generate a new benchmark dataset from historical panchromatic aerial photographs suitable for deep learning-based Land use/Land cover (LULC) segmentation task. This new benchmark dataset spans a wide geographic area and consists of aerial photographs from various populous areas in Turkey and Bulgaria from the 1950s, 1960s, and 1970s. We implemented U-Net++ and Deeplabv3 segmentation architectures and appropriate hyperparameters and backbone structures to determine the applicability of this dataset, specifically for accurate and fast mapping of past terrain conditions. This unique historical LULC dataset and the different combinations of deep learning experiments proposed can be applied to different geographical regions with similar panchromatic datasets.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipThis work was supported by the European Research Council (ERC) project: “A GeoAI-based Land Use Land Cover Segmentation Process to Analyse and Predict Rural Depopulation, Agricultural Land Abandonment, and Deforestation in Bulgaria and Turkey, 1940-2040” under the European Union’s Horizon 2020 research and innovation program Grant Agreement No. 101100837, acronym GeoAI_LULC_Seg. We would like to thank Istanbul Technical University, Scientific Research Unit (ITU-BAP) for supporting Elif Sertel with the project ID. “FHD-2023-44797”.
dc.identifier.doi10.1109/IGARSS52108.2023.10281819
dc.identifier.isbn979-835032010-7
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85178377110
dc.identifier.urihttps://doi.org/10.1109/IGARSS52108.2023.10281819
dc.identifier.urihttps://hdl.handle.net/20.500.14288/25739
dc.identifier.wos1098971602216
dc.keywordsDeep learning
dc.keywordsHistorical aerial photographs
dc.keywordsLULC
dc.keywordsSegmentation
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.grantnoDeforestation in Bulgaria and Turkey; Horizon 2020 Framework Programme, H2020, (101100837); European Research Council, ERC; Istanbul Teknik Üniversitesi, IT; Bilimsel Araştırma Projeleri Birimi, İstanbul Teknik Üniversitesi, BAP, (FHD-2023-44797)
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)
dc.subjectHistory
dc.titleDeep learning-based land use land cover segmentation of historical aerial images
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorAvcı, Cengiz
local.contributor.kuauthorKabadayı, Mustafa Erdem
local.publication.orgunit1College of Social Sciences and Humanities
local.publication.orgunit2Department of History
relation.isOrgUnitOfPublicationbe8432df-d124-44c3-85b4-be586c2db8a3
relation.isOrgUnitOfPublication.latestForDiscoverybe8432df-d124-44c3-85b4-be586c2db8a3
relation.isParentOrgUnitOfPublication3f7621e3-0d26-42c2-af64-58a329522794
relation.isParentOrgUnitOfPublication.latestForDiscovery3f7621e3-0d26-42c2-af64-58a329522794

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04463.pdf
Size:
696.09 KB
Format:
Adobe Portable Document Format