Publication:
AI-Powered industrial fault detection and diagnosis with self-supervised prediction contrast time frequency

dc.conference.date10 December 2024 through 12 December 2024
dc.conference.locationİstanbul
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorGörgülü, Hamza
dc.contributor.kuauthorÖzkasap, Öznur
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:31:00Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractIndustrial chemical facilities produce vast amounts of data, yet fault detection remains challenging due to dynamic processes and non-linear interactions. This study proposes a novel self-supervised learning (SSL) architecture using prediction contrast learning to enhance fault detection & diagnosis(FDD) in industrial settings. Our model integrates time and frequency domain information to capture crucial temporal dependencies and improve robustness. We perform complex network topology analysis for cloud and edge computing environments, considering industrial networks as complex systems with non-trivial topological features. Experimental results on the Tennessee Eastman Process Ricker dataset show significant improvements, achieving a True Positive Rate of 92% and reducing Average Detection Delay to 22.18 s. This approach addresses data scarcity issues and enhances fault detection accuracy in complex environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeN/A
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1007/978-3-031-82427-2_10
dc.identifier.eissn1860-9503
dc.identifier.embargoNo
dc.identifier.endpage124
dc.identifier.isbn9783031824265
dc.identifier.issn1860-949X
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105003291460
dc.identifier.startpage113
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29039
dc.identifier.urihttps://doi.org/10.1007/978-3-031-82427-2_10
dc.identifier.volume1187 SCI
dc.keywordsContrastive learning
dc.keywordsDeep learning
dc.keywordsFault detection
dc.keywordsIndustrial networks
dc.keywordsPrediction contrast
dc.keywordsSelf-supervised learning
dc.language.isoeng
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofStudies in computational intelligence
dc.relation.ispartof13th International Conference on Complex Networks and their Applications, COMPLEX NETWORKS 2024
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectComputer science
dc.titleAI-Powered industrial fault detection and diagnosis with self-supervised prediction contrast time frequency
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameGörgülü
person.familyNameÖzkasap
person.givenNameHamza
person.givenNameÖznur
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files