Publication: Functional genomics reveals an off-target dependency of drug synergy in gastric cancer therapy
Program
KU-Authors
KU Authors
Co-Authors
Honeywell ME, Lee MJ, Hemann MT,
Publication Date
Language
Type
Embargo Status
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
Background: Integrating molecular-targeted agents into combination chemotherapy is transformative for enhancing treatment outcomes in cancer. However, realizing the full potential of this approach requires a clear comprehension of the genetic dependencies underlying drug synergy. While the interactions between conventional chemotherapeutics are well-explored, the interplay of molecular-targeted agents with conventional chemotherapeutics remains a frontier in cancer treatment. Hence, we leveraged a powerful functional genomics approach to decode genomic dependencies that drive synergy in molecular-targeted agent/chemotherapeutic combinations in gastric adenocarcinoma, addressing a critical need in gastric cancer therapy. Methods: We screened pharmacological interactions between fifteen molecular-targeted agent/conventional chemotherapeutic pairs in gastric adenocarcinoma cells, and examined the genome-scale genetic dependencies of synergy integrating genome-wide CRISPR screening with the shRNA-based signature assay. We validated the synergy in cell death using fluorescence-based and lysis-dependent inference of cell death kinetics assay, and validated the genetic dependencies by single-gene knockout experiments. Results: Our combination screen identified SN-38/erlotinib as the drug pair with the strongest synergism. Functional genomics assays unveiled a genetic dependency signature of SN-38/erlotinib identical to SN-38. Remarkably, the enhanced cell death with improved kinetics induced by SN-38/erlotinib was attributed to erlotinib’s off-target effect, inhibiting ABCG2, rather than its on-target effect on EGFR. Conclusion: In the era of precision medicine, where emphasis on primary drug targets prevails, our research challenges this paradigm by showcasing a robust synergy underpinned by an off-target dependency. Further dissection of the intricate genetic dependencies that underlie synergy can pave the way to developing more effective combination strategies in gastric cancer therapy. © The Author(s) 2024.
Source
Publisher
Springer Nature
Subject
Medicine
Citation
Has Part
Source
Biorxiv
Book Series Title
Edition
DOI
10.1101/2023.10.07.561351