Publication:
Investigation of real-time photorepair activity on DNA via surface plasmon resonance

Thumbnail Image

Program

KU Authors

Co-Authors

Advisor

Publication Date

2012

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

The cyclobutane pyrimidine dimer (CPD) and 6-4 lesion formations along with the specific breaks on strands are the most common type of DNA damage caused by Ultraviolet light (UV) irradiation. CPD photolyase I and II construct two subfamilies of flavoproteins, which have recognition and repair capabilities of CPD sites on both single stranded (ssDNA) and double stranded DNA (dsDNA) with the aid of blue light energy. The other types of flavoprotein family consist of cryptochromes (CRY) that act as photoreceptors in plants, or circadian rhythm regulators in animals. Recent findings showed that a specific type of Cryptochrome-Drosophila, Arabidopsis, Synechocystis, Human (CRY-DASH) has photorepair activity on ssDNA. In this work, real-time interactions between CRY-DASH and ss/dsDNA as well as the interactions between Vibrio cholerae photolyase (VcPHR) and ss/dsDNA were investigated using Surface Plasmon Resonance (SPR). The interactions were then characterized and compared in order to investigate the effect of different types of flavoprotein on UV damaged ss/dsDNA. SPR results confirm the specific binding of VcPHR and CRY-DASH with UV treated DNA. This study is the first instance to quantify the interactions of UV treated and untreated DNA with flavoproteins.

Description

Source:

PLOS One

Publisher:

Public Library of Science

Keywords:

Subject

Science and technology, Multidisciplinary sciences

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details