Publication: Data-driven vibrotactile rendering of digital buttons on touchscreens
Program
KU Authors
Co-Authors
Advisor
Publication Date
2020
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
Interaction with physical buttons is an essential part of our daily routine. We use buttons daily to turn lights on, to call an elevator, to ring a doorbell, or even to turn on our mobile devices. Buttons have distinct response characteristics and are easily activated by touch. However, there is limited tactile feedback available for their digital counterparts displayed on touchscreens. Although mobile phones incorporate low-cost vibration motors to enhance touch-based interactions, it is not possible to generate complex tactile effects on touchscreens. It is also difficult to relate the limited vibrotactile feedback generated by these motors to different types of physical buttons. In this study, we focus on creating vibrotactile feedback on a touchscreen that simulates the feeling of physical buttons using piezo actuators attached to it. We first recorded and analyzed the force, acceleration, and voltage data from twelve participants interacting with three different physical buttons: latch, toggle, and push buttons. Then, a button-specific vibrotactile stimulus was generated for each button based on the recorded data. Finally, we conducted a three-alternative forced choice (3AFC) experiment with twenty participants to explore whether the resultant stimulus is distinct and realistic. In our experiment, participants were able to match the three digital buttons with their physical counterparts with a success rate of 83%. In addition, we harvested seven adjective pairs from the participants expressing their perceptual feeling of pressing the physical buttons. All twenty participants rated the degree of their subjective feelings associated with each adjective for all the physical and digital buttons investigated in this study. Our statistical analysis showed that there exist at least three adjective pairs for which participants have rated two out of three digital buttons similar to their physical counterparts.
Description
Source:
International Journal of Human-Computer Studies
Publisher:
Academic Press Ltd- Elsevier Science Ltd
Keywords:
Subject
Computer science, Cbernetics, Human engineering, Psychology