Publication:
Nonsmooth algorithms for minimizing the largest eigenvalue with applications to inner numerical radius

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMengi, Emre
dc.contributor.kuauthorKangal, Fatih
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid113760
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:26:34Z
dc.date.issued2020
dc.description.abstractNonsmoothness at optimal points is a common phenomenon in many eigenvalue optimization problems. We consider two recent algorithms to minimize the largest eigenvalue of a Hermitian matrix dependent on one parameter, both proven to be globally convergent unaffected by nonsmoothness. One of these algorithms models the eigenvalue function with a piece-wise quadratic function and is effective in dealing with nonconvex problems. The other algorithm projects the Hermitian matrix into subspaces formed of eigenvectors and is effective in dealing with large-scale problems. We generalize the latter slightly to cope with nonsmoothness. For both algorithms we analyze the rate of convergence in the nonsmooth setting, when the largest eigenvalue is multiple at the minimizer and zero is strictly in the interior of the generalized Clarke derivative, and prove that both algorithms converge rapidly. The algorithms are applied to, and the deduced results are illustrated on the computation of the inner numerical radius, the modulus of the point on the boundary of the field of values closest to the origin, which carries significance for instance for the numerical solution of a symmetric definite generalized eigenvalue problem and the iterative solution of a saddle point linear system.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume40
dc.formatpdf
dc.identifier.doi10.1093/imanum/drz041
dc.identifier.eissn1464-3642
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02915
dc.identifier.issn0272-4979
dc.identifier.linkhttps://doi.org/10.1093/imanum/drz041
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85102125011
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1692
dc.identifier.wos610489200007
dc.keywordsEigenvalue optimization
dc.keywordsNonsmooth optimization
dc.keywordsGlobal optimization
dc.keywordsRate of convergence
dc.keywordsSubspace projections
dc.keywordsField of values
dc.keywordsDefinite matrix pairs
dc.keywordsInner numerical radius
dc.languageEnglish
dc.publisherOxford University Press (OUP)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9562
dc.sourceIMA Journal Of Numerical Analysis
dc.subjectMathematics
dc.titleNonsmooth algorithms for minimizing the largest eigenvalue with applications to inner numerical radius
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-0788-0066
local.contributor.authoridN/A
local.contributor.kuauthorMengi, Emre
local.contributor.kuauthorKangal, Fatih
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9562.pdf
Size:
867.09 KB
Format:
Adobe Portable Document Format