Publication:
The structure of 1,3-butadiene clusters: benchmarking the density-functional based tight-binding method and finite temperature properties

dc.contributor.coauthorDouady, J.
dc.contributor.coauthorSimon, A.
dc.contributor.coauthorRapacioli, M.
dc.contributor.coauthorCalvo, F.
dc.contributor.coauthorTekin, A.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorYurtsever, İsmail Ersin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemistry
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid7129
dc.date.accessioned2024-11-09T12:39:38Z
dc.date.issued2021
dc.description.abstractMolecular clusters of 1,3-butadiene were theoretically investigated using a variety of approaches, encompassing classical force fields and different quantum chemical (QC) methods, as well as density-functional-based tight-binding (DFTB) in its self-consistent-charge (SCC) version. Upon suitable reparametrization, SCC-DFTB reproduces the energy difference and torsional barrier of the trans and gauche conformers of the 1,3-butadiene monomer predicted at the QC level. Clusters of pure trans and gauche conformers containing up to 20 monomers were studied separately, their energy landscapes being explored using the force fields, then locally reoptimized using DFT or SCC-DFTB. The all-trans clusters are generally found to be lower in energy and produce well-ordered structures in which the planar molecules are arranged according to a herringbone motif. Clusters of molecules in the gauche configuration are comparatively much more isotropic. Mixed clusters containing a single gauche molecule were also studied and found to keep the herringbone motif, the gauche impurity usually residing outside. In those clusters, the strain exerted by the cluster on the gauche molecule leads to significant geometrical distortion of the dihedral angle already at zero temperature. Finally, the finite temperature properties were addressed at the force field level, and the results indicate that the more ordered all-trans clusters are also prone to sharper melting mechanisms.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipANR JCJC FRAPA
dc.description.sponsorshipFrench Agence Nationale de la Recherche
dc.description.sponsorshipGDR EMIE
dc.description.versionAuthor's final manuscript
dc.description.volume140
dc.formatpdf
dc.identifier.doi10.1007/s00214-021-02742-z
dc.identifier.eissn1432-2234
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02892
dc.identifier.issn1432-881X
dc.identifier.linkhttps://doi.org/10.1007/s00214-021-02742-z
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-85104421146
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2116
dc.identifier.wos641472700001
dc.keywords1,3 butadiene
dc.keywordsDensity-functional based tight-binding
dc.keywordsMolecular clusters
dc.keywordsMolecular modeling
dc.languageEnglish
dc.publisherSpringer
dc.relation.grantnoANR-18-CE30-0021
dc.relation.grantno3533
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9539
dc.sourceTheoretical Chemistry Accounts
dc.subjectChemistry
dc.titleThe structure of 1,3-butadiene clusters: benchmarking the density-functional based tight-binding method and finite temperature properties
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-9245-9596
local.contributor.kuauthorYurtsever, İsmail Ersin
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9539.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format