Publication:
Evaluating charge equilibration methods to generate electrostatic fields in nanoporous materials

dc.contributor.coauthorOngari, Daniele
dc.contributor.coauthorBoyd, Peter G.
dc.contributor.coauthorMace, Amber K.
dc.contributor.coauthorSmit, Berend
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuauthorKadıoğlu, Özge
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid40548
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T11:53:18Z
dc.date.issued2019
dc.description.abstractCharge equilibration (Qeq) methods can estimate the electrostatic potential of molecules and periodic frameworks by assigning point charges to each atom, using only a small fraction of the resources needed to compute density functional (DFT)-derived charges. This makes possible, for example, the computational screening of thousands of microporous structures to assess their performance for the adsorption of polar molecules. Recently, different variants of the original Qeq scheme were proposed to improve the quality of the computed point charges. One focus of this research was to improve the gas adsorption predictions in metal-organic frameworks (MOFs), for which many different structures are available. In this work, we review the evolution of the method from the original Qeq scheme, understanding the role of the different modifications on the final output. We evaluated the result of combining different protocols and set of parameters, by comparing the Qeq charges with high quality DFT-derived DDEC charges for 2338 MOF structures. We focused on the systematic errors that are attributable to specific atom types to quantify the final precision that one can expect from Qeq methods in the context of gas adsorption where the electrostatic potential plays a significant role, namely, CO2 and H2S adsorption. In conclusion, both the type of algorithm and the input parameters have a large impact on the resulting charges, and we draw some guidelines to help the user to choose the proper combination of the two for obtaining a meaningful set of charges. We show that, considering this set of MOFs, the accuracy of the original Qeq scheme is often still comparable with the most recent variants, even if it clearly fails in the presence of certain atom types, such as alkali metals.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipH2020
dc.description.sponsorshipEuropean Research Council (ERC)-2017-Starting Grant
dc.description.sponsorshipSwedish Science Council (VR)
dc.description.sponsorshipSwiss National Supercomputing Centre (CSCS)
dc.description.sponsorshipEuropean Research Council (ERC) European Union’s Horizon 2020 research and innovation programme
dc.description.sponsorshipNCCR Marvel
dc.description.sponsorshipINSPIRE Potentials Master's Fellowship
dc.description.sponsorshipCOSMOS
dc.description.versionPublisher version
dc.description.volume15
dc.formatpdf
dc.identifier.doi10.1021/acs.jctc.8b00669
dc.identifier.eissn1549-9626
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01526
dc.identifier.issn1549-9618
dc.identifier.linkhttps://doi.org/10.1021/acs.jctc.8b00669
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85058644859
dc.identifier.urihttps://hdl.handle.net/20.500.14288/766
dc.identifier.wos455558200036
dc.keywordsMetal-organic frameworks
dc.keywordsElectronegativity equalization method
dc.keywordsAtomic charges
dc.keywordsForce-field
dc.keywordsBasis-sets
dc.keywordsMolecular-mechanics
dc.keywordsPopulation analysis
dc.keywordsComputation-ready
dc.keywordsCarbon-dioxide
dc.keywordsPotentials
dc.languageEnglish
dc.publisherAmerican Chemical Society (ACS)
dc.relation.grantno756489
dc.relation.grantnoCOSMOS
dc.relation.grantno2015-06320
dc.relation.grantnos761
dc.relation.grantno666983
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8098
dc.sourceJournal of Chemical Theory and Computation
dc.subjectChemistry
dc.subjectPhysics
dc.titleEvaluating charge equilibration methods to generate electrostatic fields in nanoporous materials
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5968-0336
local.contributor.authoridN/A
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorKadıoğlu, Özge
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8098.pdf
Size:
3.52 MB
Format:
Adobe Portable Document Format