Publication:
Finite-dimensional backstepping controller design

dc.contributor.coauthorOzsari T., Yilmaz K.C.
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorKalantarov, Varga
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2025-03-06T20:58:33Z
dc.date.issued2024
dc.description.abstractWe introduce a finite-dimensional version of backstepping controller design for stabilizing solutions of partial differential equations (PDEs) from boundary. Our controller uses only a finite number of Fourier modes of the state of solution, as opposed to the classical backstepping controller which uses all (infinitely many) modes. We apply our method to the reaction-diffusion equation, which serves only as a canonical example but the method is applicable also to other PDEs whose solutions can be decomposed into a slow finite-dimensional part and a fast tail, where the former dominates the evolution in large time. One of the main goals is to estimate the sufficient number of modes needed to stabilize the plant at a prescribed rate. In addition, we find the minimal number of modes that guarantee the stabilization at a certain (unprescribed) decay rate. Theoretical findings are supported with numerical solutions. © 2024 IEEE.
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/TAC.2024.3521806
dc.identifier.issn0018-9286
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85213413407
dc.identifier.urihttps://doi.org/10.1109/TAC.2024.3521806
dc.identifier.urihttps://hdl.handle.net/20.500.14288/27496
dc.keywordsBackstepping
dc.keywordsBoundary feedback
dc.keywordsReaction-diffusion equation
dc.keywordsStabilization
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.ispartofIEEE Transactions on Automatic Control
dc.subjectElectrical and electronics engineering
dc.subjectComputer engineering
dc.titleFinite-dimensional backstepping controller design
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorKalantarov, Varga
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05739.pdf
Size:
602.35 KB
Format:
Adobe Portable Document Format