Publication:
Portfolio analysis using stochastic dominance, relative entropy, and empirical likelihood

dc.contributor.coauthorPoti, Valerio
dc.contributor.departmentN/A
dc.contributor.kuauthorPost, Gerrit Tjeerd
dc.contributor.kuprofileOther
dc.contributor.schoolcollegeinstituteGraduate School of Business 
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:34:23Z
dc.date.issued2017
dc.description.abstractThis study formulates portfolio analysis in terms of stochastic dominance, relative entropy, and empirical likelihood. We define a portfolio inefficiency measure based on the divergence between given probabilities and the nearest probabilities that rationalize a given portfolio for some admissible utility function. When applied to a sample of time-series observations in a blockwise fashion, the inefficiency measure becomes a likelihood ratio statistic for testing inequality moment conditions. The limiting distribution of the test statistic is bounded by a chi-squared distribution under general sampling schemes, allowing for conservative large-sample testing. We develop a tight numerical approximation for the test statistic based on a two-stage optimization procedure and piecewise linearization techniques. A Monte Carlo simulation study of the empirical likelihood ratio test shows superior small-sample properties compared with various generalized method of moments tests. An application analyzes the efficiency of a passive stock market index in data sets from the empirical asset pricing literature.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipCollege of Administrative Sciences and Economics
dc.description.sponsorshipGraduate School of Business of Koc University
dc.description.sponsorshipUCD Michael Smurfit Graduate Business School and University College Dublin T. Post acknowledges generous research support from the College of Administrative Sciences and Economics and the Graduate School of Business of Koc University. V. poti acknowledges generous research support from UCD Michael Smurfit Graduate Business School and University College Dublin.
dc.description.volume63
dc.identifier.doi10.1287/mnsc.2015.2325
dc.identifier.eissn1526-5501
dc.identifier.issn0025-1909
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85012040974
dc.identifier.urihttp://dx.doi.org/10.1287/mnsc.2015.2325
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12343
dc.identifier.wos394360200010
dc.keywordsStochastic dominance
dc.keywordsRelative entropy
dc.keywordsEmpirical likelihood
dc.keywordsConvex programming
dc.keywordsUtility theory
dc.keywordsPortfolio theory
dc.keywordsAsset pricing
dc.keywordsAbsolute risk-aversion
dc.keywordsNonparametric-tests
dc.keywordsEfficiency
dc.keywordsDistributions
dc.keywordsInformation
dc.keywordsEstimators
dc.keywordsVariables
dc.keywordsBehavior
dc.keywordsModels
dc.keywordsErrors
dc.languageEnglish
dc.publisherThe Institute for Operations Research and the Management Sciences (INFORMS)
dc.sourceManagement Science
dc.subjectManagement
dc.subjectOperations research
dc.subjectManagement science
dc.titlePortfolio analysis using stochastic dominance, relative entropy, and empirical likelihood
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-9030-1274
local.contributor.kuauthorPost, Gerrit Tjeerd

Files