Publication:
Optimal obstacle placement with disambiguations

dc.contributor.coauthorAksakalli, Vural
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorCeyhan, Elvan
dc.contributor.kuprofileUndergraduate Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T13:27:03Z
dc.date.issued2012
dc.description.abstractWe introduce the optimal obstacle placement with disambiguations problem wherein the goal is to place true obstacles in an environment cluttered with false obstacles so as to maximize the total traversal length of a navigating agent (NAVA). Prior to the traversal, the NAVA is given location information and probabilistic estimates of each disk-shaped hindrance (hereinafter referred to as disk) being a true obstacle. The NAVA can disambiguate a disk's status only when situated on its boundary. There exists an obstacle placing agent (OPA) that locates obstacles prior to the NAVA's traversal. The goal of the OPA is to place true obstacles in between the clutter in such a way that the NAVA's traversal length is maximized in a game-theoretic sense. We assume the OPA knows the clutter spatial distribution type, but not the exact locations of clutter disks. We analyze the traversal length using repeated measures analysis of variance for various obstacle number, obstacle placing scheme and clutter spatial distribution type combinations in order to identify the optimal combination. Our results indicate that as the clutter becomes more regular (clustered), the NAVA's traversal length gets longer (shorter). On the other hand, the traversal length tends to follow a concave-down trend as the number of obstacles increases. We also provide a case study on a real-world maritime minefield data set.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume6
dc.formatpdf
dc.identifier.doi10.1214/12-AOAS556
dc.identifier.eissn1941-7330
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00105
dc.identifier.issn1932-6157
dc.identifier.linkhttps://doi.org/10.1214/12-AOAS556
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84899493561
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3503
dc.identifier.wos314458400017
dc.keywordsRepeated measures analysis of variance
dc.keywordsSpatial point process
dc.keywordsStochastic obstacle scene
dc.keywordsStochastic optimization
dc.languageEnglish
dc.publisherInstitute of Mathematical Statistics (IMS)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1137
dc.sourceAnnals of Applied Statistics
dc.subjectMathematics
dc.subjectStatistics
dc.titleOptimal obstacle placement with disambiguations
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorCeyhan, Elvan
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1137.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format