Publication: On the rate of convergence of a classifier based on a transformer encoder
dc.contributor.coauthor | Gurevych, Iryna | |
dc.contributor.coauthor | Kohler, Michael | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.kuauthor | Şahin, Gözde Gül | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Computer Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | 366984 | |
dc.date.accessioned | 2024-11-10T00:12:11Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Pattern recognition based on a high-dimensional predictor is considered. A classifier is defined which is based on a Transformer encoder. The rate of convergence of the misclassification probability of the classifier towards the optimal misclassification probability is analyzed. It is shown that this classifier is able to circumvent the curse of dimensionality provided the a posteriori probability satisfies a suitable hierarchical composition model. Furthermore, the difference between the Transformer classifiers theoretically analyzed in this paper and the ones used in practice today is illustrated by means of classification problems in natural language processing. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.issue | 12 | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 68 | |
dc.identifier.doi | 10.1109/TIT.2022.3191747 | |
dc.identifier.eissn | 1557-9654 | |
dc.identifier.issn | 0018-9448 | |
dc.identifier.quartile | Q2 | |
dc.identifier.scopus | 2-s2.0-85135219411 | |
dc.identifier.uri | http://dx.doi.org/10.1109/TIT.2022.3191747 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/17607 | |
dc.identifier.wos | 891796100027 | |
dc.keywords | Transformers | |
dc.keywords | Convergence | |
dc.keywords | Pattern recognition | |
dc.keywords | Natural language processing | |
dc.keywords | Encoding | |
dc.keywords | Electronic mail | |
dc.keywords | Deep learning | |
dc.keywords | Curse of dimensionality | |
dc.keywords | Transformer | |
dc.keywords | Classification | |
dc.keywords | Rate of convergence deep Neural-networks | |
dc.keywords | Regressıon | |
dc.keywords | Bounds | |
dc.language | English | |
dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | |
dc.source | IEEE Transactions on Information Theory | |
dc.subject | Computer science | |
dc.subject | Information technology | |
dc.subject | Information science | |
dc.subject | Electrical electronics engineerings engineering | |
dc.title | On the rate of convergence of a classifier based on a transformer encoder | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-0332-1657 | |
local.contributor.kuauthor | Şahin, Gözde Gül | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |