Publication:
On the rate of convergence of a classifier based on a transformer encoder

dc.contributor.coauthorGurevych, Iryna
dc.contributor.coauthorKohler, Michael
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorŞahin, Gözde Gül
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid366984
dc.date.accessioned2024-11-10T00:12:11Z
dc.date.issued2022
dc.description.abstractPattern recognition based on a high-dimensional predictor is considered. A classifier is defined which is based on a Transformer encoder. The rate of convergence of the misclassification probability of the classifier towards the optimal misclassification probability is analyzed. It is shown that this classifier is able to circumvent the curse of dimensionality provided the a posteriori probability satisfies a suitable hierarchical composition model. Furthermore, the difference between the Transformer classifiers theoretically analyzed in this paper and the ones used in practice today is illustrated by means of classification problems in natural language processing.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue12
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume68
dc.identifier.doi10.1109/TIT.2022.3191747
dc.identifier.eissn1557-9654
dc.identifier.issn0018-9448
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85135219411
dc.identifier.urihttp://dx.doi.org/10.1109/TIT.2022.3191747
dc.identifier.urihttps://hdl.handle.net/20.500.14288/17607
dc.identifier.wos891796100027
dc.keywordsTransformers
dc.keywordsConvergence
dc.keywordsPattern recognition
dc.keywordsNatural language processing
dc.keywordsEncoding
dc.keywordsElectronic mail
dc.keywordsDeep learning
dc.keywordsCurse of dimensionality
dc.keywordsTransformer
dc.keywordsClassification
dc.keywordsRate of convergence deep Neural-networks
dc.keywordsRegressıon
dc.keywordsBounds
dc.languageEnglish
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.sourceIEEE Transactions on Information Theory
dc.subjectComputer science
dc.subjectInformation technology
dc.subjectInformation science
dc.subjectElectrical electronics engineerings engineering
dc.titleOn the rate of convergence of a classifier based on a transformer encoder
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-0332-1657
local.contributor.kuauthorŞahin, Gözde Gül
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files