Publication:
The weak phillips property

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜlger, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T12:26:02Z
dc.date.issued2001
dc.description.abstractLet X be a Banach space. If the natural projection p : X∗∗∗ → X∗ is sequentially weak∗ -weak continuous then the space X is said to have the weak Phillips property. We present several characterizations of the spaces having this property and study its relationships to other Banach space properties, especially the Grothendieck property.
dc.description.fulltextYES
dc.description.indexedbyN/A
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.identifier.doi10.4064/cm87-2-1
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02464
dc.identifier.issn0010-1354
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-77951956235
dc.identifier.urihttps://doi.org/10.4064/cm87-2-1
dc.language.isoeng
dc.publisherInstitute of Mathematics, Polish Academy of Sciences
dc.relation.grantnoNA
dc.relation.ispartofColloquium Mathematicum
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9103
dc.subjectMathematics
dc.titleThe weak phillips property
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÜlger, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9103.pdf
Size:
149.84 KB
Format:
Adobe Portable Document Format