Publication:
Multi-scale deformable alignment and content-adaptive inference for flexible-rate bi-directional video compression

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorYılmaz, Mustafa Akın
dc.contributor.kuauthorUlaş, Ökkeş Uğur
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:41:10Z
dc.date.issued2023
dc.description.abstractThe lack of ability to adapt the motion compensation model to video content is an important limitation of current end-to-end learned video compression models. This paper advances the state-of-the-art by proposing an adaptive motion-compensation model for end-to-end rate-distortion optimized hierarchical bi-directional video compression. In particular, we propose two novelties: i) a multi-scale deformable alignment scheme at the feature level combined with multi-scale conditional coding, ii) motion-content adaptive inference. In addition, we employ a gain unit, which enables a single model to operate at multiple rate-distortion operating points. We also exploit the gain unit to control bit allocation among intra-coded vs. bi-directionally coded frames by fine tuning corresponding models for truly flexible-rate learned video coding. Experimental results demonstrate state-of-the-art rate-distortion performance exceeding those of all prior art in learned video coding1.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsThis work is supported in part by TUBITAK 2247-A Award No. 120C156 and KUIS AI Center funded by Turkish Is Bank. A. M. Tekalp also acknowledges support from Turkish Academy of Sciences (TUBA).
dc.identifier.doi10.1109/ICIP49359.2023.10223112
dc.identifier.isbn978-172819835-4
dc.identifier.issn1522-4880
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85180761136
dc.identifier.urihttps://doi.org/10.1109/ICIP49359.2023.10223112
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23560
dc.identifier.wos1106821002113
dc.keywordsBi-directional video compression
dc.keywordsContent-adaptive inference
dc.keywordsEnd-to-end rate-distortion optimization
dc.keywordsFlexible-rate coding
dc.keywordsHierarchical B pictures
dc.languageen
dc.publisherIEEE Computer Society
dc.relation.grantnoKUIS
dc.relation.grantnoTUBA
dc.relation.grantnoTurkish Is Bank
dc.relation.grantnoTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (120C156)
dc.relation.grantnoTürkiye Bilimler Akademisi
dc.sourceProceedings - International Conference on Image Processing, ICIP
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectTheory
dc.subjectMethods
dc.titleMulti-scale deformable alignment and content-adaptive inference for flexible-rate bi-directional video compression
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorYılmaz, Mustafa Akın
local.contributor.kuauthorUlaş, Ökkeş Uğur
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files