Publication:
Automatic vocal tract landmark tracking in rtMRI using fully convolutional networks and Kalman filter

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorAsadiabadi, Sasan
dc.contributor.kuauthorErzin, Engin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T11:51:23Z
dc.date.issued2020
dc.description.abstractVocal tract (VT) contour detection in real time MRI is a pre-stage to many speech production related applications such as articulatory analysis and synthesis. In this work, we present an algorithm for robust detection of keypoints on the vocal tract in rtMRI sequences using fully convolutional networks (FCN) via a heatmap regression approach. We as well introduce a spatio-temporal stabilization scheme based on a combination of Principal Component Analysis (PCA) and Kalman filter (KF) to extract stable landmarks in space and time. The proposed VT landmark detection algorithm generalizes well across subjects and demonstrates significant improvement over the state of the art baselines, in terms of spatial and temporal errors.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.identifier.doi10.1109/ICASSP40776.2020.9054332
dc.identifier.eissn2379-190X
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02739
dc.identifier.isbn9781509066315
dc.identifier.issn1520-6149
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85089213512
dc.identifier.urihttps://doi.org/10.1109/ICASSP40776.2020.9054332
dc.keywordsVocal tract dynamics
dc.keywordsFully convolutional networks
dc.keywordsHeatmap regression
dc.keywordsKalman filter
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantnoNA
dc.relation.ispartof2020 IEEE International Conference On Acoustics, Speech And Signal Processing (ICASSP)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9418
dc.subjectHeating systems
dc.subjectConvolution
dc.subjectSignal processing algorithms
dc.titleAutomatic vocal tract landmark tracking in rtMRI using fully convolutional networks and Kalman filter
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorAsadiabadi, Sasan
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Electrical and Electronics Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9418.pdf
Size:
4.13 MB
Format:
Adobe Portable Document Format