Publication:
Steady state MSE analysis of convexly constrained mixture methods

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorKozat, Süleyman Serdar
dc.contributor.kuauthorDönmez, Mehmet Ali
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid177972
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:30:33Z
dc.date.issued2012
dc.description.abstractWe study the steady-state performances of four convexly constrained mixture algorithms that adaptively combine outputs of two adaptive filters running in parallel to model an unknown system. We demonstrate that these algorithms are universal such that they achieve the performance of the best constituent filter in the steady-state if certain algorithmic parameters are chosen properly. We also demonstrate that certain mixtures converge to the optimal convex combination filter such that their steady-state performances can be better than the best constituent filter. Furthermore, we show that the investigated convexly constrained algorithms update certain auxiliary variables through sigmoid nonlinearity, hence, in this sense, related.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/CIP.2012.6232896
dc.identifier.isbn9781-4673-1878-5
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84864665518anddoi=10.1109%2fCIP.2012.6232896andpartnerID=40andmd5=ee0a4511bf4b055c6dea332610c68977
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84864665518
dc.identifier.urihttp://dx.doi.org/10.1109/CIP.2012.6232896
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12256
dc.keywordsAlgorithmic parameters
dc.keywordsAuxiliary variables
dc.keywordsConstrained algorithms
dc.keywordsConvex combinations
dc.keywordsMixture algorithm
dc.keywordsMixture method
dc.keywordsRunning-in
dc.keywordsSigmoid nonlinearity
dc.keywordsSteady state
dc.keywordsSteady state performance
dc.keywordsAdaptive filters
dc.keywordsData processing
dc.keywordsAlgorithms
dc.languageEnglish
dc.publisherIEEE
dc.source2012 3rd International Workshop on Cognitive Information Processing, CIP 2012
dc.subjectEngineering
dc.subjectElectrical and electronics engineering
dc.titleSteady state MSE analysis of convexly constrained mixture methods
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-6488-3848
local.contributor.authoridN/A
local.contributor.kuauthorKozat, Süleyman Serdar
local.contributor.kuauthorDönmez, Mehmet Ali
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files