Publication:
A note on contact surgery diagrams

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÖzbağcı, Burak
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T22:52:30Z
dc.date.issued2005
dc.description.abstractWe prove that for any positive integer k, the stabilization of a 1/k-surgery curve in a k contact surgery diagram induces an overtwisted contact structure.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume16
dc.identifier.doi10.1142/S0129167X05002746
dc.identifier.issn0129-167X
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-12844259044
dc.identifier.urihttps://doi.org/10.1142/S0129167X05002746
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7038
dc.identifier.wos226914500006
dc.keywordsContact surgery
dc.keywordsOpen book decomposition
dc.keywordsFillability
dc.language.isoeng
dc.publisherWorld Scientific Publishing
dc.relation.ispartofInternational Journal of Mathematics
dc.subjectMathematics
dc.titleA note on contact surgery diagrams
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorÖzbağcı, Burak
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files