Publication:
Stabilization and adiabatic control of antiferromagnetically coupled skyrmions without the topological hall effect

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorYağan, Rawana
dc.contributor.kuauthorCheghabouri, Arash Mousavi
dc.contributor.kuauthorOnbaşlı, Mehmet Cengiz
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-12-29T09:38:59Z
dc.date.issued2023
dc.description.abstractSynthetic antiferromagnetically coupled (SAF) multilayers provide different physics of stabilizing skyrmions while eliminating the topological Hall effect (THE), enabling efficient and stable control. The effects of material parameters, external current drive, and a magnetic field on the skyrmion equilibrium and propagation characteristics are largely unresolved. Here, we present a computational and theoretical demonstration of the large window of material parameters that stabilize SAF skyrmions determined by saturation magnetization, uniaxial anisotropy, and Dzyaloshinskii-Moriya interaction. Current-driven SAF skyrmion velocities reach & SIM;200 m s(-1) without the THE. The SAF velocities are about 3-10 times greater than the typical ferromagnetic skyrmion velocities. The current densities needed for driving SAF skyrmions could be reduced to 10(8) A m(-2), while 10(11) A m(-2) or above is needed for ferromagnetic skyrmions. By reducing the SAF skyrmion drive current by 3 orders, Joule heating is reduced by 6 orders of magnitude. These results pave the way for new SAF interfaces with improved equilibrium, dynamics, and power savings in THE-free skyrmionics.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue17
dc.description.openaccessGreen Published, gold
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsThis study has been funded by the European Research Council (ERC) Starting Grant SKYNOLIMIT Grant No. 948063, ERC Proof of Concept Grant SuperPHOTON Grant No. 101100718 and partially from TUBITAK Grant No. 120F230.
dc.description.volume5
dc.identifier.doi10.1039/d3na00236e
dc.identifier.eissnN/A
dc.identifier.issn2516-0230
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85168736119
dc.identifier.urihttps://doi.org/10.1039/d3na00236e
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22874
dc.identifier.wos1043908700001
dc.keywordsAngular-dependence
dc.keywordsImagnetic skyrmions
dc.languageen
dc.publisherRoyal Soc Chemistry
dc.relation.grantnoEuropean Research Council (ERC) [948063]
dc.relation.grantnoERC [101100718]
dc.relation.grantnoTUBITAK [120F230]
dc.relation.grantnoEuropean Research Council (ERC) [948063, 101100718] Funding Source: European Research Council (ERC)
dc.sourceNanoscale Advances
dc.subjectChemistry
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectMaterials science
dc.titleStabilization and adiabatic control of antiferromagnetically coupled skyrmions without the topological hall effect
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorYağan, Rawana
local.contributor.kuauthorCheghabouri, Arash Mousavi
local.contributor.kuauthorOnbaşlı, Mehmet Cengiz
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files