Publication:
Modeling the density of US yield curve using Bayesian semiparametric dynamic Nelson-Siegel model

dc.contributor.departmentDepartment of Economics
dc.contributor.kuauthorÇakmaklı, Cem
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Economics
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.yokid107818
dc.date.accessioned2024-11-09T12:30:04Z
dc.date.issued2019
dc.description.abstractThis paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model for estimating the density of bond yields. Specifically, we model the distribution of the yield curve factors according to an infinite Markov mixture (iMM). The model allows for time variation in the mean and covariance matrix of factors in a discrete manner, as opposed to continuous changes in these parameters such as the Time Varying Parameter (TVP) models. Estimating the number of regimes using the iMM structure endogenously leads to an adaptive process that can generate newly emerging regimes over time in response to changing economic conditions in addition to existing regimes. The potential of the proposed framework is examined using US bond yields data. The semiparametric structure of the factors can handle various forms of non-normalities including fat tails and nonlinear dependence between factors using a unified approach by generating new clusters capturing these specific characteristics. We document that modeling parameter changes in a discrete manner increases the model fit as well as forecasting performance at both short and long horizons relative to models with fixed parameters as well as the TVP model with continuous parameter changes. This is mainly due to fact that the discrete changes in parameters suit the typical low frequency monthly bond yields data characteristics better.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipAXA Research Fund
dc.description.versionAuthor's final manuscript
dc.description.volume39
dc.formatpdf
dc.identifier.doi10.1080/07474938.2019.1690191
dc.identifier.eissn1532-4168
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02447
dc.identifier.issn0747-4938
dc.identifier.linkhttps://doi.org/10.1080/07474938.2019.1690191
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-85075741011
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1885
dc.identifier.wos498499200001
dc.keywordsSocial sciences, mathematical methods
dc.keywordsStatistics and probability
dc.keywordsBayesian inference
dc.keywordsDirichlet process mixture
dc.keywordsDynamic factor model
dc.keywordsNelson-Siegel model
dc.keywordsYield curve
dc.languageEnglish
dc.publisherTaylor _ Francis
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9084
dc.sourceEconometric Reviews
dc.subjectEconomics
dc.subjectMathematics, interdisciplinary applications
dc.titleModeling the density of US yield curve using Bayesian semiparametric dynamic Nelson-Siegel model
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-4688-2788
local.contributor.kuauthorÇakmaklı, Cem
relation.isOrgUnitOfPublication7ad2a3bb-d8d9-4cbd-a6a3-3ca4b30b40c3
relation.isOrgUnitOfPublication.latestForDiscovery7ad2a3bb-d8d9-4cbd-a6a3-3ca4b30b40c3

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9084.pdf
Size:
476.37 KB
Format:
Adobe Portable Document Format