Publication: Mechanical properties of silicon nanowires with native oxide surface state
Program
KU Authors
Co-Authors
Advisor
Publication Date
2024
Language
en
Type
Journal article
Journal Title
Journal ISSN
Volume Title
Abstract
Silicon nanowires have attracted considerable interest due to their wide-ranging applications in nanoelectromechanical systems and nanoelectronics. Molecular dynamics simulations are powerful tools for studying the mechanical properties of nanowires. However, these simulations encounter challenges in interpreting the mechanical behavior and brittle to ductile transition of silicon nanowires, primarily due to surface effects such as the assumption of an unreconstructed surface state. This study specifically focuses on the tensile deformation of silicon nanowires with a native oxide layer, considering critical parameters such as cross-sectional shape, length -to -critical dimension ratio, temperature, the presence of nano -voids, and strain rate. By incorporating the native oxide layer, the article aims to provide a more realistic representation of the mechanical behavior for different critical dimensions and crystallographic orientations of silicon nanowires. The findings contribute to the advancement of knowledge regarding size -dependent elastic properties and strength of silicon nanowires.
Description
Source:
Materials Today Communications
Publisher:
Elsevier
Keywords:
Subject
Materials science, Multidisciplinary