Publication:
Integrated Sensing and Communication for STAR-RIS-Aided UAV Networks

dc.contributor.coauthorEghbali, Yasoub
dc.contributor.coauthorMohammadisarab, Amir
dc.contributor.coauthorZarini, Hosein
dc.contributor.coauthorMili, Mohammad Robat
dc.contributor.coauthorDi Renzo, Marco
dc.contributor.coauthorWymeersch, Henk
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorBaşar, Ertuğrul
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:33:02Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractThis paper studies an integrated sensing and communication framework, in which an unmanned aerial vehicle (UAV) concurrently serves mobile users and sensing targets with the assistance of a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS). To analyze the performance of this system, an admission control problem is formulated that aims to maximize the number of served sensing targets. Due to tight coupling and its non-convex nature, the problem is transformed to a Markov decision process (MDP) form, based on which a recurrent deep deterministic policy gradient (RDPG) agent is trained to jointly optimize the UAV flight trajectory, STAR-RIS coefficients, as well as the transmit and receive beamforming at the transceivers. Concerning the frequent displacement of the UAV and thus the considerable dynamism of the system, we further enrich the trained RDPG model for better adapting to the system variations by integrating a meta-learning technique. Numerical results exhibit at least 30% enhancement in average admission rate of sensing targets with the assistance of STAR-RIS. Additionally, the proposed adaptive resource allocation scheme brings about 25% superiority in average, over the existing soft actor-critic (SAC) counterpart available in the literature. © 1967-2012 IEEE.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/TVT.2025.3546544
dc.identifier.embargoNo
dc.identifier.issn0018-9545
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105000020780
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29227
dc.identifier.urihttps://doi.org/10.1109/TVT.2025.3546544
dc.keywordsIntegrated sensing and communication (ISAC)
dc.keywordsMeta-learning
dc.keywordsRecurrent deep deterministic policy gradient (RDPG)
dc.keywordsSimultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
dc.keywordsUnmanned aerial vehicle (UAV)
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofIEEE transactions on vehicular technology
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectMobile telecommunication systems
dc.titleIntegrated Sensing and Communication for STAR-RIS-Aided UAV Networks
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameBaşar
person.givenNameErtuğrul
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files