Publication:
Engineering four-qubit fuel states for protecting quantum thermalization machine from decoherence

dc.contributor.coauthorOzaydin, Fatih
dc.contributor.coauthorSarkar, Ramita
dc.contributor.coauthorBayrakci, Veysel
dc.contributor.coauthorBayindir, Cihan
dc.contributor.coauthorAltintas, Azmi Ali
dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-12-29T09:37:57Z
dc.date.issued2024
dc.description.abstractDecoherence is a major issue in quantum information processing, degrading the performance of tasks or even precluding them. Quantum error-correcting codes, creating decoherence-free subspaces, and the quantum Zeno effect are among the major means for protecting quantum systems from decoherence. Increasing the number of qubits of a quantum system to be utilized in a quantum information task as a resource expands the quantum state space. This creates the opportunity to engineer the quantum state of the system in a way that improves the performance of the task and even to protect the system against decoherence. Here, we consider a quantum thermalization machine and four-qubit atomic states as its resource. Taking into account the realistic conditions such as cavity loss and atomic decoherence due to ambient temperature, we design a quantum state for the atomic resource as a classical mixture of Dicke and W states. We show that using the mixture probability as the control parameter, the negative effects of the inevitable decoherence on the machine performance almost vanish. Our work paves the way for optimizing resource systems consisting of a higher number of atoms.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessgold
dc.description.publisherscopeInternational
dc.description.sponsorsNo Statement Available
dc.description.volume15
dc.identifier.doi10.3390/info15010035
dc.identifier.eissn2078-2489
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85183090451
dc.identifier.urihttps://doi.org/10.3390/info15010035
dc.identifier.urihttps://hdl.handle.net/20.500.14288/22530
dc.identifier.wos1153022500001
dc.keywordsEntanglement
dc.keywordsCoherence
dc.keywordsDicke states
dc.keywordsW states
dc.keywordsQuantum thermodynamics
dc.keywordsQuantum heat engines
dc.keywordsQuantum thermalization machine, master, cavity-QED
dc.languageen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.grantnoPersonal Research Fund of Tokyo International University, Turkish Academy of Sciences (TBA)-Outstanding Young Scientist Award (GEBIdot
dc.relation.grantnoP)
dc.sourceInformation
dc.subjectComputer science, information systems
dc.titleEngineering four-qubit fuel states for protecting quantum thermalization machine from decoherence
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR04904.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format