Publication:
Biodegradable untethered magnetic hydrogel milli-grippers

dc.contributor.coauthorGoudu, Sandhya Rani
dc.contributor.coauthorYasa, İmmihan Ceren
dc.contributor.coauthorHu, Xinghao
dc.contributor.coauthorCeylan, Hakan
dc.contributor.coauthorHu, Wenqi
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T12:15:28Z
dc.date.issued2020
dc.description.abstractSmall-scale magnetic soft-bodied robots based on biocompatible and biodegradable materials are essential for their potential high-impact minimally invasive medical applications inside the human body. Therefore, a strategy for fully biodegradable untethered soft millirobots with encoded 3D magnetic anisotropy for their static or dynamic shape programming is presented. Such a robot body is comprised of a porcine extracellular matrix-derived collagen-based hydrogel network with embedded superparamagnetic iron oxide nanoparticles (SPIONs). 3D magnetization programming inside the hydrogel body is achieved by directionally self-assembled SPION chains using an external permanent magnet. As a proof-of-concept demonstration, a hydrogel milli-gripper that can undergo flexible and reversible shape deformations inside glycerol and biologically relevant liquid media is presented. The gripper can perform cargo grabbing, transportation by rolling, and release by controlling magnetic field inputs. These milli-grippers can be completely degraded by the matrix metalloproteinase-2 enzyme in physiologically relevant concentrations. Furthermore, biocompatibility tests using human umbilical cord vein endothelial cells with the degradation products of the grippers demonstrate no acute toxicity. The approach offers a facile fabrication strategy for designing biocompatible and biodegradable soft robots using nanocomposite materials with programmable 3D magnetic anisotropy toward future medical applications.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue50
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipMax Planck Society
dc.description.sponsorshipProjekt DEAL
dc.description.versionPublisher version
dc.description.volume30
dc.formatpdf
dc.identifier.doi10.1002/adfm.202004975
dc.identifier.eissn1616-3028
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02398
dc.identifier.issn1616-301X
dc.identifier.linkhttps://doi.org/10.1002/adfm.202004975
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85090933465
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1342
dc.identifier.wos569120700001
dc.keywordsBiocompatible
dc.keywordsBiodegradable
dc.keywordsMedical devices
dc.keywordsMillirobot
dc.keywordsSoft robot
dc.languageEnglish
dc.publisherWiley
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9034
dc.sourceAdvanced Functional Materials
dc.subjectChemistry
dc.subjectScience and technology
dc.subjectMaterials science
dc.subjectPhysics
dc.titleBiodegradable untethered magnetic hydrogel milli-grippers
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9034.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format