Publication:
Aggregation-induced dissociation of HCl(H 2O) 4 below 1 K: The smallest droplet of acid

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Acid dissociation and the subsequent solvation of the charged fragments at ultracold temperatures in nanoenvironments, as distinct from ambient bulk water, are relevant to atmospheric and interstellar chemistry but remain poorly understood. Here we report the experimental observation of a nanoscopic aqueous droplet of acid formed within a superfluid helium cluster at 0.37 kelvin. High-resolution mass-selective infrared laser spectroscopy reveals that successive aggregation of the acid HCl with water molecules, HCl(H 2O) n, readily results in the formation of hydronium at n = 4. Accompanying ab initio simulations show that undissociated clusters assemble by stepwise water molecule addition in electrostatic steering arrangements up to n = 3. Adding a fourth water molecule to the ringlike undissociated HCl(H 2O) 3 then spontaneously yields the compact dissociated H 3O +(H 2O) 3Cl - ion pair. This aggregation mechanism bypasses deep local energy minima on the n = 4 potential energy surface and offers a general paradigm for reactivity at ultracold temperatures.

Source

Publisher

American Association for the Advancement of Science

Subject

Chemistry

Citation

Has Part

Source

Science

Book Series Title

Edition

DOI

10.1126/science.1171753

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details