Publication:
Data-efficient equivariant NNPs enable DFT-accurate simulations and implicit solvation free energies

dc.contributor.coauthorMutlu, Esma
dc.contributor.coauthorKankinou, Selonou G.
dc.contributor.coauthorKocak, Abdulkadir
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorTayfuroğlu, Ömer
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-12-31T08:20:16Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractThe use of machine learning (ML) potentials has emerged as a powerful approach in computational chemistry, particularly in computer-aided drug design studies. Neural network potentials (NNPs) provide a more physics-informed estimation of binding and solvation events, bridging the accuracy gap between classical force fields and quantum mechanical methods. Current universal neural network potentials (NNPs) have not yet achieved consistent chemical accuracy required for reliable molecular dynamics simulations. Accurate yet data efficient representation of potential energy surfaces and prediction of solvation free energies are essential for large-scale molecular simulations and drug-design workflows. Here, we utilize data efficient E(3)-equivariant graph neural network potentials that are capable of estimating the solvation free energies (SFEs) of small compounds with density functional theory (DFT)-level accuracy and significantly reduced computational cost. Leveraging the data efficiency of equivariant architectures, our models achieve chemical accuracy with a relatively small training data set. We demonstrate that the method is data-efficient in constructing ML potentials. Our focus is on hydration free energy changes of small compounds from the FreeSolv database. We develop and test two distinct NNPs-one for the gas phase and one for an implicit water model-that can be applied in molecular simulations and SFE calculations using implicit solvation. The Solvation Model based on Density (SMD)-based implicit NNP model achieves an accuracy of 89% while offering a substantial computational speed-up compared to its DFT counterpart, which attains 90% accuracy.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccesshybrid
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Arastirma Kurumu [223Z125]
dc.identifier.doi10.1021/acs.jpcb.5c05891
dc.identifier.eissn1520-5207
dc.identifier.embargoNo
dc.identifier.grantno223Z125
dc.identifier.issn1520-6106
dc.identifier.pubmed41312842
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-105024735063
dc.identifier.urihttps://doi.org/10.1021/acs.jpcb.5c05891
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31508
dc.identifier.wos001627253000001
dc.keywordsCheminformatics
dc.keywordsDensity functional theory
dc.keywordsDrug design
dc.keywordsGraph neural network
dc.keywordsMolecular dynamics
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofThe journal of physical chemistry
dc.relation.openaccessNo
dc.rightsCopyrighted
dc.subjectChemistry
dc.titleData-efficient equivariant NNPs enable DFT-accurate simulations and implicit solvation free energies
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameTayfuroğlu
person.givenNameÖmer
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files