Publication:
Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions

dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorErman, Burak
dc.contributor.kuauthorHacısüleyman, Aysima
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T13:11:53Z
dc.date.issued2017
dc.description.abstractA fast and approximate method of generating allosteric communication landscapes in proteins is presented by using Schreiber's entropy transfer concept in combination with the Gaussian Network Model of proteins. Predictions of the model and the allosteric communication landscapes generated show that information transfer in proteins does not necessarily take place along a single path, but an ensemble of pathways is possible. The model emphasizes that knowledge of entropy only is not sufficient for determining allosteric communication and additional information based on time delayed correlations should be introduced, which leads to the presence of causality in proteins. The model provides a simple tool for mapping entropy sink-source relations into pairs of residues. By this approach, residues that should be manipulated to control protein activity may be determined. This should be of great importance for allosteric drug design and for understanding the effects of mutations on function. The model is applied to determine allosteric communication in three proteins, Ubiquitin, Pyruvate Kinase, and the PDZ domain. Predictions are in agreement with molecular dynamics simulations and experimental evidence.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue6
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume85
dc.identifier.doi10.1002/prot.25272
dc.identifier.eissn1097-0134
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01385
dc.identifier.issn0887-3585
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85019223862
dc.identifier.urihttps://doi.org/10.1002/prot.25272
dc.identifier.wos403690200006
dc.keywordsDynamic Gaussian network model
dc.keywordsFluctuations
dc.keywordsCorrelation function
dc.keywordsMutual entropy
dc.keywordsJoint probability of fluctuations
dc.keywordsMolecular dynamics
dc.keywordsDrug design
dc.keywordsUbiquitin
dc.keywordsPyruvate kinase
dc.keywordsPDZ domain
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofProteins: Structure, Function, And Bioinformatics
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/7980
dc.subjectBiochemistry and molecular biology
dc.subjectBiophysics
dc.titleCausality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorHacısüleyman, Aysima
local.contributor.kuauthorErman, Burak
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Chemical and Biological Engineering
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
7980.pdf
Size:
779.14 KB
Format:
Adobe Portable Document Format