Publication:
Decoding cognitive states using the bag of words model on fMRI time series

dc.contributor.coauthorSucu, Gunes
dc.contributor.coauthorAkbas, Emre
dc.contributor.coauthorVural, Fatos Yarman
dc.contributor.departmentDepartment of Psychology
dc.contributor.departmentN/A
dc.contributor.kuauthorÖztekin, İlke
dc.contributor.kuauthorMızrak, Eda
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Psychology
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteGraduate School of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:13:06Z
dc.date.issued2016
dc.description.abstractBag-of-words (BoW) modeling has yielded successful results in document and image classification tasks. In this paper, we explore the use of BoW for cognitive state classification. We estimate a set of common patterns embedded in the fMRI time series recorded in three dimensional voxel coordinates by clustering the BOLD responses. We use these common patterns, called the code-words, to encode activities of both individual voxels and group of voxels, and obtain a BoW representation on which we train linear classifiers. Our experimental results show that the BoW encoding, when applied to individual voxels, significantly improves the classification accuracy (an average 7.2% increase over 13 different datasets) compared to a classical multi voxel pattern analysis method. This preliminary result gives us a clue to generate a code-book for fMRI data which may be used to represent a variety of cognitive states to study the human brain.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/SIU.2016.7496222
dc.identifier.isbn9781-5090-1679-2
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84982814991&doi=10.1109%2fSIU.2016.7496222&partnerID=40&md5=565630e1e98b3c57ba27d4884c02626d
dc.identifier.scopus2-s2.0-84982814991
dc.identifier.urihttp://dx.doi.org/10.1109/SIU.2016.7496222
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9930
dc.identifier.wos391250900538
dc.keywordsClassification (of information)
dc.keywordsEncoding (symbols)
dc.keywordsInformation retrieval
dc.keywordsInformation retrieval systems
dc.keywordsSignal processing
dc.keywordsTime series
dc.keywordsBag of words
dc.keywordsBag-of-words models
dc.keywordsBow representations
dc.keywordsClassification accuracy
dc.keywordsCognitive state
dc.keywordsHuman brain
dc.keywordsLinear classifiers
dc.keywordsMulti-voxel pattern analysis
dc.keywordsImage classification
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source2016 24th Signal Processing and Communication Application Conference, SIU 2016 - Proceedings
dc.subjectEngineering
dc.subjectElectrical and electronic engineering
dc.titleDecoding cognitive states using the bag of words model on fMRI time series
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-1765-7047
local.contributor.kuauthorÖztekin, İlke
local.contributor.kuauthorMızrak, Eda
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublication.latestForDiscoveryd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c

Files