Publication:
Nanoscale communication with molecular arrays in nanonetworks

Thumbnail Image

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Galmes, Sebastia

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Molecular communication is a promising nanoscale communication paradigm that enables nanomachines to exchange information by using molecules as communication carrier. Up to now, the molecular communication channel between a transmitter nanomachine (TN) and a receiver nanomachine (RN) has been modeled as either concentration channel or timing channel. However, these channel models necessitate exact time synchronization of the nanomachines and provide a relatively low communication bandwidth. In this paper, the Molecular ARray-based COmmunication (MARCO) scheme is proposed, in which the transmission order of different molecules is used to convey molecular information without any need for time synchronization. The MARCO channel model is first theoretically derived, and the intersymbol interference and error probabilities are obtained. Based on the error probability, achievable communication rates are analytically obtained. Numerical results and performance comparisons reveal that MARCO provides significantly higher communication rate, i.e., on the scale of 100 Kbps, than the previously proposed molecular communication models without any need for synchronization. More specifically, MARCO can provide more than 250 Kbps of molecular communication rate if intersymbol time and internode distance are set to 2 mu s and 2 nm, respectively.

Source

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Biochemical research methods, Nanoscience and nanotechnology

Citation

Has Part

Source

IEEE Transactions on NanoBioscience

Book Series Title

Edition

DOI

10.1109/TNB.2011.2181862

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

7

Downloads

View PlumX Details