Publication:
Computer simulations of 4240 MOF membranes for H-2/CH4 separations: insights into structure-performance relations

dc.contributor.coauthorGülçay, Ezgi
dc.contributor.coauthorEruçar, İlknur
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorKeskin, Seda
dc.contributor.kuauthorAltıntaş, Çiğdem
dc.contributor.kuauthorAvcı, Gökay
dc.contributor.kuauthorHarman, Hilal Dağlar
dc.contributor.kuprofileResearcher
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid40548
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:15:42Z
dc.date.issued2018
dc.description.abstractDesign of new membranes having high H-2/CH4 selectivity and high H-2 permeability is strongly desired to reduce the energy demand for H-2 production. Metal organic frameworks (MOFs) offer a great promise for membrane-based gas separations due to their tunable physical and chemical properties. We performed a high-throughput computational screening study to examine membrane-based H-2/CH4 separation potentials of 4240 MOFs. Grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations were used to compute adsorption and diffusion of H-2 and CH4 in MOFs. Simulation results were then used to predict adsorption selectivity, diffusion selectivity, gas permeability and membrane selectivity of MOFs. A large number of MOF membranes was found to outperform traditional polymer and zeolite membranes by exceeding the Robeson's upper bound for selective separation of H-2 from CH4. Structure-performance analysis was carried out to understand the relations between MOF membranes' selectivities and their pore sizes, surface areas, porosities, densities, lattice systems, and metal types. Results showed that MOFs with pore limiting diameters between 3.8 and 6 angstrom, the largest cavity diameters between 6 and 12 angstrom, surface areas less than 1000 m(2) g(-1), porosities between 0.5 and 0.75, and densities between 1 and 1.5 g cm(-3) are the most promising membranes leading to H-2 selectivities > 10 and H-2 permeabilities > 10(4) Barrer. Our results suggest that monoclinic MOFs having copper metals are the best membrane candidates for H-2/CH4 separations. This study represents the first high-throughput computational screening of the most recent MOF database for membrane-based H-2/CH4 separation and microscopic insight provided from molecular simulations will be highly useful for the future design of new MOFs having extraordinarily high H-2 selectivities.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue14
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipH2020
dc.description.sponsorshipEuropean Research Council (ERC)-2017-Starting Grant
dc.description.sponsorshipCOSMOS
dc.description.versionPublisher version
dc.description.volume6
dc.formatpdf
dc.identifier.doi10.1039/c8ta01547c
dc.identifier.eissn2050-7496
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01361
dc.identifier.issn2050-7488
dc.identifier.linkhttps://doi.org/10.1039/c8ta01547c
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85045015432
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1353
dc.identifier.wos431506600042
dc.keywordsEnergy and fuels
dc.keywordsMetal-organic frameworks
dc.keywordsCrystalline porous materials
dc.keywordsGas separations
dc.keywordsMolecular simulations
dc.keywordsCH4/H-2 separations
dc.keywordsTheoretical predictions
dc.keywordsCoordination networks
dc.keywordsZIF-8 membranes
dc.keywordsAdsorption
dc.keywordsMixtures
dc.languageEnglish
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.grantno756489
dc.relation.grantnoCOSMOS
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8091
dc.sourceJournal of Materials Chemistry A
dc.subjectChemistry
dc.subjectMaterials science
dc.titleComputer simulations of 4240 MOF membranes for H-2/CH4 separations: insights into structure-performance relations
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5968-0336
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.kuauthorKeskin, Seda
local.contributor.kuauthorAltıntaş, Çiğdem
local.contributor.kuauthorAvcı, Gökay
local.contributor.kuauthorHarman, Hilal Dağlar
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8091.pdf
Size:
1.59 MB
Format:
Adobe Portable Document Format