Publication:
Additive polylogarithms and their functional equations

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜnver, Sinan
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid177871
dc.date.accessioned2024-11-09T22:59:15Z
dc.date.issued2010
dc.description.abstractLet k[epsilon](2) := k[epsilon]/(epsilon(2)). The single valued real analytic n-polylogarithm L-n : C -> R is fundamental in the study of weight n motivic cohomology over a field k, of characteristic 0. In this paper, we extend the construction in Unver (Algebra Number Theory 3:1-34, 2009) to define additive n-polylogarithms li(n):k[epsilon](2) -> k and prove that they satisfy functional equations analogous to those of Ln. Under a mild hypothesis, we show that these functions descend to an analog of the nth Bloch group B'(n)(k[epsilon](2)) defined by Goncharov (Adv Math 114:197-318, 1995). We hope that these functions will be useful in the study of weight n motivic cohomology over k[epsilon](2).
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsorshipDeutsche Forschungsgemeinschaft [SFB/TR45]
dc.description.sponsorshipTUBITAK[109T674] The author thanks H. Esnault for the invitation to University of Duisburg-Essen, which provided very stimulating conditions, where this paper was partly written
dc.description.sponsorshipto S. Bloch, H. Esnault, A. Chatzistamatiou and K. Rulling for mathematical discussions. Finally, the author thanks D. Zagier for his proof of the crucial Lemma 1 and the referee for pointing out the formula that relates some special values of the additive polylogarithm to those of the Riemann zeta function (Remark 3) and the analogy between our construction and that of Dupont in [9] (Remark 4). The author was supported by SFB/TR45 of the Deutsche Forschungsgemeinschaft and 109T674 of TUBITAKwhile this paper was written.
dc.description.volume348
dc.identifier.doi10.1007/s00208-010-0493-7
dc.identifier.eissn1432-1807
dc.identifier.issn0025-5831
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-77956957016
dc.identifier.urihttp://dx.doi.org/10.1007/s00208-010-0493-7
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7866
dc.identifier.wos282095200004
dc.keywordsN/A
dc.languageEnglish
dc.publisherSpringer Heidelberg
dc.sourceMathematische Annalen
dc.subjectMathematics
dc.titleAdditive polylogarithms and their functional equations
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-5816-4882
local.contributor.kuauthorÜnver, Sinan
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files